Erythroid Kruppel-Like Factor Regulates E2F4 and the G1 Cdk Inhibitor, p18.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1357-1357
Author(s):  
Andrew C. Perkins ◽  
Janelle R. Keys ◽  
Denise J. Hodge ◽  
Michael R. Tallack

Abstract Erythroid Kruppel-Like Factor (EKLF) is a zinc finger transcription factor which is essential for β-globin gene expression. Knockout mice die from anemia at E15, but restoration of globin chain imbalance does not rescue anemia or increase survival. Cell lines derived from EKLF null mice undergo proliferation arrest upon reactivation of a conditional EKLF-ER fusion protein, suggesting a role in cell cycle control. A transcriptional profiling experiment comparing the global gene expression in EKLF null and wild type fetal liver identified many differentially expressed genes, a number of which function in G1 and at the G1/S checkpoint of the cell cycle. The Cyclin dependent kinase (Cdk) inhibitor, p18, and the S phase transcription factor E2F4 were both found to be significantly down regulated in EKLF null mice and this result was confirmed by real-time PCR. Interestingly, E2F4 knockout mice have a similar phenotype to EKLF knockout mice. Bioinformatic searches of the p18 and E2F4 genes shows that each contains phylogenetically conserved CACC box motifs capable of binding EKLF within longer regions of conservation in promoter and intron regions. The p18 gene contains two conserved CACCC sites upstream of the start of transcription, which are required for EKLF dependent promoter activity in luciferase reporter assays. The transcription factor E2F4 contains a conserved EKLF-binding CACC site within an intron that is closely associated with two conserved GATA1 binding sites. We show by a chromatin immunoprecipitation (ChIP) assays that the E2F4 intron and p18 promoter are occupied by EKLF in vivo. Together, these results suggest that EKLF is likely to directly regulate expression of key cell cycle genes in vivo to drive the switch from proliferation to differentiation of erythrocytes. The loss of EKLF is likely to result in aberrant proliferation and predisposition to leukemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 780-780
Author(s):  
Andrew G. Muntean ◽  
Liyan Pang ◽  
Mortimer Poncz ◽  
Steve Dowdy ◽  
Gerd Blobel ◽  
...  

Abstract Megakaryocytes, which fragment to give rise to platelets, undergo a unique form of cell cycle, termed endomitosis, to become polyploid and terminally differentiate. During this process, cells transverse the cell cycle but the late stages of mitosis are bypassed to lead to accumulation of DNA up to 128N. While the mechanisms of polyploidization in megakaryocytes are poorly understood, a few cell cycle regulators, such as cyclin D3, have been implicated in this process. Hematopoietic transcription factors, including GATA-1 and RUNX1 are also essential for polyploidization, as both GATA1-deficient and RUNX1-null megakaryocytes undergo fewer rounds of endomitosis. Interestingly, GATA-1 deficient megakaryocytes are also smaller than their wild-type counterparts. However, the link between transcription factors and the growth and polyploidization of megakaryocytes has not been established. In our studies to identify key downstream targets of GATA-1 in the megakaryocyte lineage, we discovered that the cell cycle regulators cyclin D1 and p16 were aberrantly expressed in the absence of GATA-1: cyclin D1 expression was reduced nearly 10-fold, while that of p16ink4a was increased 10-fold. Luciferase reporter assays revealed that GATA-1, but not the leukemic isoform GATA-1s, promotes cyclinD1 expression. Consistent with these observations, megakaryocytes that express GATA-1s in place of full-length GATA-1 are smaller than their wild-type counterparts. Chromatin immunoprecipitation studies revealed that GATA-1 is bound to the cyclin D1 promoter in vivo, in primary fetal liver derived megakaryocytes. In contrast, GATA-1 is not associated with the cyclin D1 promoter in erythroid cells, which do not become polyploid. Thus, cyclin D1 is a bona fide GATA-1 target gene in megakaryocytes. To investigate whether restoration of cyclin D1 expression could rescue the polyploidization defect in GATA-1 deficient cells, we infected fetal liver progenitors isolated from GATA-1 knock-down mice with retroviruses harboring the cyclin D1 cDNA (and GFP via an IRES element) or GFP alone. Surprisingly, expression of cyclin D1 did not increase the extent of polyploidization of the GATA-1 deficient megakaryocytes. However, co-overexpression of cyclin D1 and Cdk4 resulted in a dramatic increase in polyploidization. Consistent with the model that cyclinD:Cdk4/6 also regulates cellular metabolism, we observed that the size of the doubly infected cells was also significantly increased. Finally, in support of our model that cyclin D:Cdk4/6 kinase activity is essential for endomitosis, we discovered that introduction of wild-type p16 TAT fusion protein, but not a mutant that fails to interact with Cdk4/6, significantly blocked polyploidization of primary fetal liver derived megakaryocytes. Taken together, our data reveal that the process of endomitosis and cell growth relies heavily on cyclinD:Cdk4/6 kinase activity and that the maturation defects in GATA-1 deficient megakaryocytes are due, in part, to reduced Cyclin D1 and increase p16 expression.


2007 ◽  
Vol 100 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
David W. Emery ◽  
Georgios Gavriilidis ◽  
Haruhiko Asano ◽  
George Stamatoyannopoulos

1998 ◽  
Vol 18 (12) ◽  
pp. 7106-7118 ◽  
Author(s):  
Katherine A. Eliassen ◽  
Amy Baldwin ◽  
Eric M. Sikorski ◽  
Myra M. Hurt

ABSTRACT Expression of the highly conserved replication-dependent histone gene family increases dramatically as a cell enters the S phase of the eukaryotic cell cycle. Requirements for normal histone gene expression in vivo include an element, designated α, located within the protein-encoding sequence of nucleosomal histone genes. Mutation of 5 of 7 nucleotides of the mouse H3.2 α element to yield the sequence found in an H3.3 replication-independent variant abolishes the DNA-protein interaction in vitro and reduces expression fourfold in vivo. A yeast one-hybrid screen of a HeLa cell cDNA library identified the protein responsible for recognition of the histone H3.2 α sequence as the transcription factor Yin Yang 1 (YY1). YY1 is a ubiquitous and highly conserved transcription factor reported to be involved in both activation and repression of gene expression. Here we report that the in vitro histone α DNA-protein interaction depends on YY1 and that mutation of the nucleotides required for the in vitro histone α DNA-YY1 interaction alters the cell cycle phase-specific up-regulation of the mouse H3.2 gene in vivo. Because all mutations or deletions of the histone α sequence both abolish interactions in vitro and cause an in vivo decrease in histone gene expression, the recognition of the histone α element by YY1 is implicated in the correct temporal regulation of replication-dependent histone gene expression in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 525-525
Author(s):  
Elliott J. Hagedorn ◽  
Julie R. Perlin ◽  
Rebecca J. Freeman ◽  
Clara Mao ◽  
Inés Fernández-Maestre ◽  
...  

The hematopoietic stem and progenitor cell (HSPC) niche is a supportive microenvironment comprised of distinct cell types, including specialized vascular endothelial cells (ECs) that directly interact with HSPCs and promote stem cell function. Utilizing spatial transcriptomics, in combination with tissue-specific RNA-seq, we identified 29 genes selectively enriched in ECs of the zebrafish fetal hematopoietic niche. Using upstream regulatory sequences for two of these genes, mrc1a and selectin E (sele), we generated GFP reporter lines that allowed us to selectively isolate niche ECs for ATAC-seq. This analysis identified 6,848 regions of chromatin that were accessible in niche ECs but not ECs from other tissues. Several of these regions were associated with the 29 genes. To evaluate whether these regions might be enhancers we coupled them to GFP and injected them into embryos. 12/15 sequences drove GFP expression in niche ECs. Upon closer examination of the mrc1a and sele genes, we identified enhancer sequences as short as 125 bp and 158 bp, respectively, which drove niche EC-specific expression. A genome-wide motif enrichment analysis of the 6,848 uniquely open chromatin regions revealed that Ets, SoxF and Nuclear Hormone Receptor (RXRA/NR2F2, specifically) sites were most enriched. In contrast, 4,522 pan-EC elements were enriched for Ets sites but not SoxF or NHR motifs. Using mutant variants of the 125 bp and 158 bp enhancer sequences, we demonstrated that Ets, SoxF and RXRA/NR2F2 sites were independently required for specific transgene expression. Gel shift experiments demonstrated that NR2F2 could bind the 125 bp and 158 bp zebrafish enhancers and this binding was disrupted upon mutation of the NR2F2 binding sites. Knockdown of the endogenous zebrafish nr2f2 gene resulted in a loss of expression of the 125 bp mrc1a enhancer-GFP construct and a significantly reduced number of HSPCs in the fetal niche. We next injected pools of human transcription factors, including at least one member from each of the three families, under the control of a ubiquitous promoter. Strikingly, we found that a combination of ETV2 or ETS1 with SOX7 and NR2F2 generated ectopic patches of mrc1a+ niche ECs that recruited runx1+ HSPCs outside of the endogenous niche. Using high-resolution live cell imaging we could observe HSPCs initially arriving at the ectopic sites, lodging for several hours and then eventually dividing and migrating away from the site through circulation. HSPCs localized to the ectopic regions were found in both intravascular and extravascular spaces, and were often enwrapped by ECs and in contact with cxcl12a+ stromal cells, similar to what is observed in the endogenous niche. Ectopic regions of niche EC gene expression were similarly observed when alternative regulatory elements were used for transcription factor overexpression, including a pan-EC enhancer (nrp1b), a muscle promoter (mylz2) and a heat shock promoter (hsp70). These results suggest the three-factor combinations are sufficient to reprogram niche EC identify in vivo. Lastly, we evaluated by RNA-seq the expression of our niche EC signature in the zebrafish kidney marrow (the site of adult hematopoiesis) and in ECs from multiple organs of the mouse, including the heart, kidney, liver, lung and bone marrow, at multiple stages of development (E11-13, E14-15, E16-17, P2-P4 and adult). Strikingly, 23/29 genes were highly expressed in ECs of the zebrafish kidney and 21/29 genes were enriched in the ECs of a mammalian hematopoietic organ - the fetal liver and/or adult bone marrow - relative to their expression in ECs from non-hematopoietic organs at the same stage. Notably, for a subset of the genes the expression patterns mirrored the temporal dynamics of HSPC ontogeny in the mouse, showing robust expression in fetal liver ECs and then later in adult bone marrow ECs with a concomitant reduction in liver ECs. An analysis of transcription factor expression within these EC populations revealed that Ets1, the SoxF factor Sox18, and Nr2f2 were the most highly expressed members of the Ets, Sox and NHR families. Collectively our work has uncovered a conserved gene expression signature and transcriptional regulatory program unique to the vascular niche of hematopoietic organs. These findings have important implications for designing a synthetic vascular niche for blood stem cells or for modulating the niche in a therapeutic context. Disclosures Zon: Fate Therapeutics: Equity Ownership; Scholar Rock: Equity Ownership; CAMP4: Equity Ownership.


1996 ◽  
Vol 16 (5) ◽  
pp. 1889-1895 ◽  
Author(s):  
F Oswald ◽  
T Dobner ◽  
M Lipp

Histone gene expression is restricted to the S phase of the cell cycle. Control is mediated by a complex network of sequence-specific DNA-binding factors and protein-protein interactions in response to cell cycle progression. To further investigate the regulatory functions that are associated at the transcriptional level, we analyzed the regulation of a replication-dependent human H2A.1-H2B.2 gene pair. We found that transcription factor E2F binds specifically to an E2F recognition motif in the H2A.1 promoter region. Activation of the H2A.1 promoter by E2F-1 was shown by use of luciferase reporter constructs of the intergenic promoter region. Overexpression of the human retinoblastoma suppressor gene product RB suppressed E2F-1 mediated transcriptional activation, indicating an E2F-dependent regulation of promoter activity during the G1-to-S-phase transition. Furthermore, the activity of the H2A.1 promoter was also downregulated by overexpression of the RB-related p107, a protein that has been detected in S-phase-specific protein complexes of cyclin A, E2F, and cdk2. In synchronized HeLa cells, expression of luciferase activity was induced at the beginning of DNA synthesis and was dependent on the presence of an E2F-binding site in the H2A.1 promoter. Together with the finding that E2F-binding motifs are highly conserved in H2A promoters of other species, our results suggest that E2F plays an important role in the coordinate regulation of S-phase-specific histone gene expression.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Jeremy H Toyn ◽  
Anthony L Johnson ◽  
Joseph D Donovan ◽  
W Mark Toone ◽  
Leland H Johnston

Deactivation of the B cyclin kinase (Cdc28/Clb) drives the telophase to G1 cell cycle transition. Here we investigate one of the control pathways that contributes to kinase deactivation, involving the cell cycle-regulated production of the cdk inhibitor Sic1. We show that the cell cycle timing of SIC1 expression depends on the transcription factor Swi5, and that Swi5-dependent SIC1 expression begins during telophase. In contrast to Swi5, the related transcription factor Ace2, which can also induce SIC1 expression, is not active during telophase. The functional consequence of Swi5-regulated SIC1 expression in vivo is that both sic1Δ and swi5Δ strains have identical mitotic exit-related phenotypes. First, both are synthetically lethal with dbf2Δ, resulting in cell cycle arrest in telophase. Second, both are hypersensitive to overexpression of the B cyclin CLB2. Thus, Swi5-dependent activation of the SIC1 gene contributes to the deactivation of the B cyclin kinase, and hence exit from mitosis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3641-3641
Author(s):  
Andrew C. Perkins ◽  
Peter Papathanasiou ◽  
Christopher C. Goodnow ◽  
Janelle R. Keys

Abstract The zinc finger transcription factor Ikaros is recognized as a key regulator of lymphocyte differentiation. Recently generated dominant negative mutants have hinted at a broader role in haematopoietic stem cell generation. Most recently, a mouse strain, IkarosPlastic, with a point mutation in Ikaros that disrupts DNA binding but preserves efficient assembly of Ikaros protein complexes, is embryonically lethal due to severe defects in erythrocyte differentiation (Papathanasiou P, et al,. Immunity, 2003). (1). These mice display normal murine globin gene expression in the fetal liver. However in humans the globin locus is under alternative regulatory control, particularly with respect to the fetal-to-adult globin switch. Thus, to determine if Ikaros plays a role in human globin switching we crossed the IkarosPlastic mice with mice transgenic for a YAC containing the entire human b-globin locus, which show human fetal to adult globin gene switching from E12 to E17. Embryos were harvested from E12.5 to E15.5 and globin expression was determined in the fetal liver by real-time PCR (relative to actin). At all time points human gamma-globin gene expression was not significantly altered by the presence of the IkarosPlastic mutatation (relative expression Ikaroswt/wt 1±0.11, IkarosPlastic/Plastic 0.82±0.12). In contrast, human beta-globin gene expression was significantly down-regulated in IkarosPlastic fetal livers (relative expression Ikaroswt/wt 1±0.14, IkarosPlastic/Plastic 0.18±0.07). Interestingly, neither murine a- or b-globin gene expression was significantly different to wild type mice, which suggests that the transcription factor Ikaros plays a specific role in the transcriptional activation of the human b-globin gene during development. The mechanism by which this occurs remains to be elucidated, however it is intriguing to consider that Ikaros may act as a potentiator of transcription for erythroid specific transcription factors such as EKLF. Experiments to address this will be presented.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 643-643
Author(s):  
Jian Xu ◽  
Vijay G. Sankaran ◽  
Erica B. Esrick ◽  
Benjamin L. Ebert ◽  
Stuart H. Orkin

Abstract Abstract 643 Persistence of fetal hemoglobin (HbF) in adults ameliorates severity of sickle cell disease and β-thalassemia. The transcriptional repressor BCL11A is a newly identified critical mediator of hemoglobin switching and HbF silencing. Previously we showed that BCL11A knockout mice with a human β-globin gene cluster transgene (β-locus mice) fail to silence mouse embryonic globins and human fetal (γ-) globins in adult erythroid cells of the fetal liver. The ratio of human fetal to adult globin RNA in the fetal liver of BCL11A knockout mice is inverted compared to controls, such that γ constitutes >90% of the β-like human expression at embryonic day (E)14.5 and >75% at E18.5. These findings provide compelling evidence that BCL11A controls hemoglobin switching in vivo. These BCL11A-null mice are postnatally lethal. Thus, the extent to which developmental silencing of HbF expression is dependent on BCL11A in adult animals cannot be assessed. Here we examined by formal genetics the contribution of BCL11A to HbF silencing through conditional inactivation of BCL11A in β-locus mice. Mice harboring erythroid-specific inactivation of BCL11A develop normally. As in the conventional knockout, the hemoglobin switching fails to occur in the fetal liver, such that γ constitutes >80% of the β-like human globins. After birth, the level of γ-globin is maintained persistently and contributes 43% in newborns, 25% in 4-week-old young adults, and 12% in 30-week-old adults. Even at this late time, the level of γ-globin is >500-fold that of control mice. The viability of these mice, taken together with ostensibly normal red cell production, indicates that BCL11A has few, if any, non-critical globin targets. To determine if loss of BCL11A in the adult reactivates γ-globin genes that were previously silenced developmentally, we conditionally inactivated BCL11A through induction of Mx1-Cre. Acute loss of BCL11A in adult bone marrows leads to persistent reactivation of γ-globin (>500-fold derepression compared to controls). Thus, BCL11A is required in vivo to maintain HbF silencing in adults. Gradual silencing of γ-globin in BCL11A-null adults suggests the presence of additional silencing pathways in the mouse trans-acting environment. In support of this hypothesis, we observed that the levels of DNA methylation at the γ-globin promoters are substantially decreased in BCL11A-null erythroid precursors from E14.5 fetal livers (40%), bone marrows of young (59%) and old (66%) mice. The levels are >80% in control mice at all ages. Loss of DNA methylation at γ-promoters indicates that developmental silencing of HbF is impaired upon loss of BCL11A. The gradual increase of DNA methylation indicates that the γ-globin genes are subject to epigenetic silencing in the absence of BCL11A in the mouse trans-acting environment. Histone deacetylases (HDACs) are potential molecular targets mediating HbF induction. By high-resolution ChIP-chip analysis, we demonstrate that HDAC1 occupies the γ-globin genes in primary human adult erythroid precursors. Administration of a HDAC inhibitor (Vorinostat) to BCL11A conditional knockout mice leads to further elevation of HbF, suggesting that the combination of BCL11A downregulation and HDAC inhibition may provide a strategy for efficient HbF augmentation. Collectively, these findings provide important insight into the role of BCL11A in HbF silencing in adults and new clues for target-based therapeutics in patients with hemoglobin disorders. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261971
Author(s):  
Jialu Qiao ◽  
Qian Peng ◽  
Feng Qian ◽  
Qiang You ◽  
Lingyan Feng ◽  
...  

MicroRNAs (miRNAs) are important molecules that mediate virus-host interactions, mainly by regulating gene expression via gene silencing. Here, we demonstrated that HIV-1 infection upregulated miR-210-5p in HIV-1-inoculated cell lines and in the serum of HIV-1-infected individuals. Luciferase reporter assays and western blotting confirmed that a target protein of miR-210-5p, TGIF2, is regulated by HIV-1 infection. Furthermore, HIV-1 Vpr protein induced miR-210-5p expression. The use of a miR-210-5p inhibitor and TGIF2 overexpression showed that Vpr upregulated miR-210-5p and thereby downregulated TGIF2, which might be one of the mechanisms used by Vpr to induce G2 arrest. Moreover, we identified a transcription factor, NF-κB p50, which upregulated miR-210-5p in response to Vpr protein. In conclusion, we identified a mechanism whereby miR-210-5p, which is induced upon HIV-1 infection, targets TGIF2. This pathway was initiated by Vpr protein activating NF-κB p50, which promoted G2 arrest. These alterations orchestrated by miRNA provide new evidence on how HIV-1 interacts with its host during infection and increase our understanding of the mechanism by which Vpr regulates the cell cycle.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1652-1655 ◽  
Author(s):  
Kathleen P. Anderson ◽  
Scott C. Crable ◽  
Jerry B. Lingrel

The erythroid Krüppel-like factor (EKLF) is a key regulatory protein in globin gene expression. This zinc finger transcription factor is required for expression of the adult β globin gene, and it has been suggested that it plays an important role in the developmental switch from fetal γ to adult β globin gene expression. We have previously described a sequence element in the distal promoter region of the mouse EKLF gene that is critical for the expression of this transcription factor. The element consists of an E box motif flanked by 2 GATA-1 binding sites. Here we demonstrate that mutation of the E box or the GATA-1 consensus sequences eliminates expression from the EKLF promoter in transgenic mice. These results confirm the importance of this activator element for in vivo expression of the EKLF gene.


Sign in / Sign up

Export Citation Format

Share Document