Maintenance of Telomere Length in Peripheral Blood CD4+CD25+ Regulatory T-Cells of Cancer Patients Despite Active Proliferation.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3309-3309
Author(s):  
Dominik Wolf ◽  
Holger Rumpold ◽  
Christian Koppelstaetter ◽  
Guenther Gastl ◽  
Eberhard Gunsilius ◽  
...  

Abstract CD4+CD25+ regulatory T-cells (Treg) are increased in the peripheral blood of cancer patients. It remains unclear whether this is due to redistribution or active proliferation. The latter would require the up-regulation of telomerase activity, whose regulation also remains unknown for Treg. We therefore isolated Treg and the respective CD4+CD25− control T-cell population from peripheral blood of cancer patients (n=23) and healthy age-matched controls (n=17). Analysis of their content of T-cell receptor excision circles (TREC) revealed that the observed increase of Treg frequencies in peripheral blood is due to active cycling rather than to redistribution from other compartments (i.e. secondary lymphoid organs or bone-marrow), as Treg from cancer patients are characterized by a significant decrease of TREC content when compared to TREC content of Treg isolated from healthy age-matched controls. Surprisingly, despite their proven in vivo proliferation, telomere length is not further shortened in Treg from peripheral blood of cancer patients as shown by Flow-Fish, Real-Time PCR and Southern Blotting. Accodingly, telomerase activity of Treg was readily inducible in vitro by OKT3 together with IL-2. Notably, sorting of in vitro proliferating Treg using dilution of CFSE revealed a significant telomere shortening in Treg with high proliferative capacity (i.e. CFSElow fraction) under conditions of strong in vitro stimulatory growth conditions despite a high telomerase activity. Thus, under conditions of strong in vitro stimulation induction of telomerase seems to be insufficient to avoid progressive telomere shortening. In contrast, in actively proliferating peripheral blood Treg from patients with epithelial malignancies induction of telomerase activity is likely to compensate for further telomere erosion.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3857-3857
Author(s):  
Dominik G.F. Wolf ◽  
Anna M. Wolf ◽  
Christian Koppelstaetter ◽  
Holger F. Rumpold ◽  
Gert Mayer ◽  
...  

Abstract The expandability of CD4+CD25+ regulatory T-cells (Treg) has been shown in vitro and in vivo. Activation of telomerase activity is a prerequisite for clonal expansion and telomere maintenance in T-cells. There is currently no data available on the expression and function of telomerase in proliferating Treg. Analyses of telomere length by flow-FISH, real-time PCR and Southern blotting revealed that Treg isolated from healthy human volunteers have significantly shortened telomeres when compared to CD4+CD25− T-cells. However, telomere length is not further shortened in Treg isolated from the peripheral blood of cancer patients, despite the observation that the regulatory T-cell pool of these patients was significantly enlarged. To gain further insight into maintenance of telomere length of Treg, we induced in vitro proliferation of Treg by stimulation with anti-CD3 and IL-2. This led to a rapid increase of telomerase activity, as determined by PCR-ELISA. However, when we focused on the proliferating fraction of Treg using a sorting strategy based on the dilution of CFSE, we could show a significant telomere shortening in Treg with high proliferative and immmuno-suppressive capacity. Of note, proliferating CFSElow Treg are characterized by high telomerase activity, which however seems to be insufficient to avoid further telomere shortening under conditions of strong in vitro stimulation. In contrast, under conditions of in vivo expansion of Treg in cancer patients, the induction of telomerase activity is likely to compensate for further telomere erosion. These data might be of importance when considering the application of in vitro expanded Treg for the treatment of GvHD or autoimmune diseases, as telomere shortening might be associated with genomic instability.


2014 ◽  
Vol 74 (6) ◽  
pp. 1293-1301 ◽  
Author(s):  
Tian Wang ◽  
Xiaolin Sun ◽  
Jing Zhao ◽  
Jing Zhang ◽  
Huaqun Zhu ◽  
...  

ObjectiveRegulatory T cells (Tregs) with the plasticity of producing proinflammatory cytokine IL-17 have been demonstrated under normal and pathogenic conditions. However, it remains unclear whether IL-17-producing Tregs lose their suppressive functions because of their plasticity toward Th17 in autoimmunity. The aim of this study was to investigate IL-17-producing Tregs from patients with rheumatoid arthritis (RA), and characterise their regulatory capacity and clinical significance.MethodsFoxp3 and IL-17 coexpression were evaluated in CD4 T lymphocytes from RA patients. An in vitro T cell polarisation assay was performed to investigate the role of proinflammatory cytokines in IL-17-producing Treg polarisation. The suppressive function of IL-17-producing Tregs in RA was assessed by an in vitro suppression assay. The relationship between this Treg subset and clinical features in RA patients was analysed using Spearman's rank correlation test.ResultsA higher frequency of IL-17-producing Tregs was present in the peripheral blood of RA patients compared with healthy subjects. These cells from peripheral blood showed phenotypic characteristics of Th17 and Treg cells, and suppressed T cell proliferation in vitro. Tregs in RA synovial fluid lost suppressive function. The Th17 plasticity of Tregs could be induced by IL-6 and IL-23. An increased ratio of this Treg subset was associated with decreased levels of inflammatory markers, including the erythrocyte sedimentation rate and C-reactive protein level, in patients with RA.ConclusionsIncreased levels of IL-17-producing Tregs were identified in RA patients. This Treg subset with Th17 plasticity in peripheral blood retained suppressive functions and was associated with milder inflammatory conditions, suggesting that this Treg population works as a negative regulator in RA, but in RA synovial site it may be pathogenic.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 1008-1011 ◽  
Author(s):  
Hiroyoshi Nishikawa ◽  
Elke Jäger ◽  
Gerd Ritter ◽  
Lloyd J. Old ◽  
Sacha Gnjatic

AbstractA proportion of cancer patients naturally develop CD4+ T-helper type 1 (Th1) cell responses to NY-ESO-1 that correlate with anti–NY-ESO-1 serum antibodies. To address the role of T-cell regulation in the control of spontaneous tumor immunity, we analyzed NY-ESO-1–specific Th1 cell induction before or after depletion of CD4+CD25+ T cells in vitro. While Th1 cells were generated in the presence of CD25+ T cells in cancer patients seropositive for NY-ESO-1, seronegative cancer patients and healthy donors required CD25+ T-cell depletion for in vitro induction of NY-ESO-1–specific Th1 cells. In vitro, newly generated NY-ESO-1–specific Th1 cells were derived from naive precursors, whereas preexisting memory populations were detectable exclusively in patients with NY-ESO-1 antibody. Memory populations were less sensitive than naive populations to CD4+CD25+ regulatory T cells. We propose that CD4+CD25+ regulatory T cells are involved in the generation and regulation of NY-ESO-1–specific antitumor immunity.


2019 ◽  
Vol 8 (4) ◽  
pp. 309-317
Author(s):  
Yun Hu ◽  
Na Li ◽  
Peng Jiang ◽  
Liang Cheng ◽  
Bo Ding ◽  
...  

Objective Thyroid nodules are usually accompanied by elevated thyroglobulin (Tg) level and autoimmune thyroid diseases (AITDs). However, the relationship between Tg and AITDs is not fully understood. Dysfunction of regulatory T cells (Tregs) plays an important role in the development of AITDs. We aimed to evaluate the effects of Tg on the function of Tregs in patients with thyroid nodules. Methods Tg levels and the functions of Tregs in peripheral blood and thyroid tissues of patients with thyroid nodules from Nanjing First Hospital were evaluated. The effects of Tg on the function of Tregs from healthy donors were also assessed in vitro. The function of Tregs was defined as an inhibitory effect of Tregs on the effector T cell (CD4+ CD25− T cell) proliferation rate. Results The level of Tg in peripheral blood correlated negatively with the inhibitory function of Tregs (R = 0.398, P = 0.03), and Tregs function declined significantly in the high Tg group (Tg >77 μg/L) compared with the normal Tg group (11.4 ± 3.9% vs 27.5 ± 3.5%, P < 0.05). Compared with peripheral blood, the function of Tregs in thyroid declined significantly (P < 0.01), but the proportion of FOXP3+ Tregs in thyroid increased (P < 0.01). High concentration of Tg (100 μg/mL) inhibited the function of Tregs and downregulated FOXP3, TGF-β and IL-10 mRNA expression in Tregs in vitro. Conclusions Elevated Tg level could impair the function of Tregs, which might increase the risk of AITDs in patient with thyroid nodules.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5562
Author(s):  
Juliette Palle ◽  
Laure Hirsch ◽  
Alexandra Lapeyre-Prost ◽  
David Malka ◽  
Morgane Bourhis ◽  
...  

Elucidating mechanisms involved in tumor-induced immunosuppression is of great interest since it could help to improve cancer immunotherapy efficacy. Here we show that Hepatocyte Growth Factor (HGF), a pro-tumoral and proangiogenic factor, and its receptor c-Met are involved in regulatory T cells (Treg) accumulation in the peripheral blood of gastric cancer (GC) patients. We observed that c-Met is expressed on circulating monocytes from GC patients. The elevated expression on monocytes is associated with clinical parameters linked to an aggressive disease phenotype and correlates with a worse prognosis. Monocyte-derived dendritic cells from GC patients differentiated in the presence of HGF adopt a regulatory phenotype with a lower expression of co-stimulatory molecules, impaired maturation capacities, and an increased ability to produce interleukin-10 and to induce Treg differentiation in vitro. In the MEGA-ACCORD20-PRODIGE17 trial, GC patients received an anti-HGF antibody treatment (rilotumumab), which had been described to have an anti-angiogenic activity by decreasing proliferation of endothelial cells and tube formation. Rilotumumab decreased circulating Treg in GC patients. Thus, we identified that HGF indirectly triggers Treg accumulation via c-Met-expressing monocytes in the peripheral blood of GC patients. Our study provides arguments for potential alternative use of HGF/c-Met targeted therapies based on their immunomodulatory properties which could lead to the development of new therapeutic associations in cancer patients, for example with immune checkpoint inhibitors.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 497-497
Author(s):  
Alexander Roeth ◽  
Jan Duerig ◽  
Heike Himmelreich ◽  
Reiner Siebert ◽  
Stefanie Bug ◽  
...  

Abstract T-cell prolymphocytic leukemia (T-PLL) is a rare aggressive lymphoproliferative disease characterized by the expansion of a T-cell clone derived from immuno-competent post-thymic T-lymphocytes. Important mechanisms involved in expansion of human malignant cells are reactivation of telomerase, an enzyme complex, which is able to compensate the loss of telomere repeats by cell division, and maintenance or elongation of telomere length. To investigate the role of telomeres and telomerase we measured telomere length by automated multicolor flow-FISH and telomerase activity by telomeric repeat amplification protocol in subsets of peripheral blood leukocytes from 11 newly diagnosed or relapsed patients with sporadic T-PLL. In addition, we analyzed the effect of the selective telomerase inhibitor BIBR1532 on T-PLL cells in short-term culture assays. The average telomere length in the clonal T-cells of all samples analyzed was extremely short (mean ± std: 1.53 kb ± 0.65 kb) compared to the non-clonal T-cells (5.03 kb ± 0.71 kb; p=0.012). The average telomere length for B-cells in these patients was 6.37 kb ± 0.71 kb (n=6). Telomere length values of the clonal T-cells were all below the 1st percentile of telomere length values observed in T-cells from healthy aged-matched controls whereas non-clonal T-cells and B-cells fell between the 1st and 99th percentile of the normal distribution. Interestingly, telomere length in the clonal T-cells remained stably short at 1.0 kb ± 0.6 kb without further telomere loss in one patient over a period of 18 months. No cell doublets indicative of fused or bridged chromosomes and telomere dysfunction were observed. Clonal T-cells exhibited high levels of telomerase activity almost comparable to levels of the positive control K562 whereas there was no measurable telomerase activity in normal, unstimulated T-cells. Telomerase levels even correlated inversely with telomere length in clonal T-cells (r=−0.91, n=6). In addition, we could induce a dose-dependent cytotoxicity of T-PLL cells with the telomerase inhibitor BIBR1532 (viable cells as percentage of untreated controls (viability index) in % after 10 days of cell culture (mean ± std) with 0, 10, 40, 100 μM BIBR1532: 100 ± 0, 54 ± 14.3, 27.5 ± 11.7, 2.6 ± 1.6, n=6) whereas no effect was observed in normal, unstimulated T-cells (viability index in % (mean ± std) after 10 days with 0, 10, 40, 100 μM BIBR1532: 100 ± 0, 100.8 ± 8.6, 96.9 ± 7.9, 103.1 ± 22.4, n=3). In summary, clonal T-cells in T-PLL exhibit extremely short telomeres which could explain the genomic instability with cytogenetic aberrations. The high levels of telomerase found in T-PLL cells are sufficient to stably maintain the critically short telomeres and allow clonal expansion. In addition, we can demonstrate that inhibition of telomerase in vitro in the situation of T-PLL cells with already very short telomeres and high telomerase levels leads to rapid cytotoxicity of the T-cell clone without a time delay before telomeres get critically short as observed in the situation of longer telomeres. Targeting telomerase and telomeres seems therefore an attractive strategy for the future treatment of this devastating disease.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4139-4139
Author(s):  
Patrick Ziegler ◽  
Thomas Schettgen ◽  
Stefan Wilop ◽  
Natalia Soares Quintete ◽  
Susanne Ziegler ◽  
...  

Abstract Polychlorinated biphenyls (PCBs) are technical mixtures with a varying three-dimensional structure, depending on the degree and the position of the chlorine atom on two benzene rings. The International Agency for Research on Cancer (IARC) classified PCBs as possible carcinogens. In Germany, the employees of a transformer recycling company were contaminated with high blood levels of PCBs. Within the HELPcB-program (Health Effects in High-level Exposure to PCB), the telomere lengths (TL) of peripheral blood granulocytes and lymphocytes of 208 exposed workers were measured using flow-cytometry-based in situ hybridization (flow-FISH). Whereas the mean age-adjusted TL within granulocytes was not affected, the TL within lymphocytes of PCB exposed individuals was significantly shortened, compared to normal individuals (µ = -0,77kb; p<0.0001). Significantly shortened TL in lymphocytes was associated with a high body burden of lower chlorinated PCBs but not of dioxin-like PCBs or higher chlorinated PCBs (PCB 28 (KK – 0.140, p=0.045), PCB 52 (KK – 0.184, p=0.008), PCB 101 (KK – 0.150, p=0.003)). As PCB28 represented the most sensitive indicator of additional PCB contamination within the group of PCB exposed workers, we chose PCB28 to directly test the effects of lower chlorinated PCBs on telomere shortening in vitro. We first applied a structure-based design approach to develop 3OH-PCB28, a potential bioactive derivative of PCB28. Biotransformation of PCB28 by HePG2 liver cells confirmed the formation of 3OH-PCB28, and 3OH-PCB28 showed dose-dependent, significant antiproliferative and proapoptotic effects on K562 cells as well as on stimulated T-cells from healthy blood donors. In addition, when T-cell proliferation was stimulated by phytohemagglutinin (PHA), tetanus toxoid (TT), or cytomegalovirus (CMV) antigen, the upregulation of telomerase expression was inhibited by 3OH-PCB28 at subtoxic concentrations. As telomerase expression levels determine the lifespan of T-cells, these results suggest that 3OH-PCB28 might affect T- cell capacity for cell division and clonal expansion. Furthermore, 3OH-PCB28 inhibited telomerase expression in K562 cells and led to significantly shorter telomeres, compared to controls, in long-term incubation experiments. We therefore provide mechanistic evidence for the shortened TL found in the lymphocytes of workers contaminated with lower chlorinated PCBs. As short TL in peripheral blood cells have been shown to be associated with increased risk for cancer, long-time monitoring of PCB exposed workers might provide further insights into the abovementioned functional correlations. Disclosures Brümmendorf: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


1983 ◽  
Vol 158 (2) ◽  
pp. 571-585 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
M C Mingari ◽  
J C Cerottini

In order to directly assess the distribution of cytolytic T lymphocytes (CTL) and their precursors (CTL-P) in the two major subsets of human T cells, we have used limiting dilution microculture systems to determine their frequencies. The two subsets were defined according to their reactivity (or lack thereof) with B9.4 monoclonal antibody (the specificity of which is similar, if not identical, to that of Leu 2b monoclonal antibody). Both B9+ and B9- cells obtained by sorting peripheral blood resting T cells using the fluorescence-activated cell sorter (FACS) were assayed for total CTL-P frequencies in a microculture system that allows clonal growth of every T cell. As assessed by a lectin-dependent assay, approximately 30% of peripheral blood T cells were CTP-P. In the B9+ subset (which represents 20-30% of all T cells), the CTL-P frequency was close to 100%, whereas the B9- subset had a 25-fold lower CTL-P frequency. It is thus evident that 90% and 10% of the total CTL-P in peripheral blood are confined to the B9+ or B9- T cell subsets, respectively. Analysis of the subset distribution of CTL-P directed against a given set of alloantigens confirmed these findings. CTL-P frequencies were also determined in B9+ and B9- subsets derived from T cells that had been activated in allogenic mixed leucocyte cultures (MLC). Approximately 10% of MLC T cells were CTL-P. This frequency was increased 3.5-fold in the B9+ subset, whereas the B9- subset contained only a small, although detectable number of CTL-P. Moreover, the great majority of the (operationally defined) CTL-P in MLC T cell population were found to be directed against the stimulating alloantigens, thus indicating a dramatic increase in specific CTL-P frequencies following in vitro stimulation in bulk cultures.


Sign in / Sign up

Export Citation Format

Share Document