Molecular and Phenotypic Analysis of Philadelphia Chromosome-Positive Bilineage Leukemia: Possibility of a Lineage Switch from T-Lymphoid Leukemia Progenitor to Myeloid Cells Via PU.1 Expression.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4362-4362
Author(s):  
Kazuhiro Nishii ◽  
Fumihiko Monma ◽  
Felipe Lorenzo ◽  
Naoyuki Katayama ◽  
Hiroshi Shiku

Abstract The occurrence of acute bilineage leukemia is thought to be the malignant transformation of a myeloid or lymphoid leukemic progenitor with the potential to differentiate into the other lineages; however, the mechanisms of this lineage switch are not well understood. Here, we show the extremely rare case of adult Philadelphia chromosome positive acute bilineage leukemia, characterized by T-cell acute lymphoblastic leukemia, CD7+CD5+CD14−, and acute myelomonocytic leukemia, CD7−CD5−CD14+. Chromosome analysis showed 46,XY,del(7)(p11.2),t(9;22)(q34;q11.2) in all metaphase and leukemic cells expressed a minor BCR/ABL chimeric gene. When the CD5+CD14− and CD5−CD14+ cells were sorted, a fusion gene of BCR/ABL and a same clonal rearranged band of a T-cell receptor (TCR) gene were detected in both populations. Nucleotide sequencing of the TCRg gene revealed the clonal rearrangement of the V8-JGT2 complex in both populations. Over-expression of PU.1, which plays a fundamental role in myelomonocyte development was found in the sorted CD34+CD7+ and CD5−CD14+, but not CD5+CD14− cells. These results suggest that leukemic progenitor cells in the T-lineage with del(7),t(9;22) chromosome have the potential to differentiate into myeloid lineage and enforced PU.1 expression may contribute in part of this phenomenon. Studies of bilineage leukemia will be important for the understanding of lineage commitment and switch in hematopoietic cells.

2021 ◽  
pp. 1040-1050
Author(s):  
Samah Kohla ◽  
Sarah EL Kourashy ◽  
Zafar Nawaz ◽  
Reda Youssef ◽  
Ahmad Al-Sabbagh ◽  
...  

T-acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) is rare and aggressive leukemia. Philadelphia chromosome positive (Ph+) is the most common cytogenetic abnormality in chronic myeloid leukemia (CML) and B-acute lymphoblastic leukemia (B-ALL). Ph+ T-ALL is exceeding rare and has a therapeutic and prognostic significance. The incidence and outcome of Ph+ T-ALL are unknown. Differentiation between Ph+ T-ALL/LBL and T-cell lymphoblastic crises of CML may be difficult. We report a rare case of adult de novo T-ALL with significant monocytosis, having Ph+ with (P190 <i>BCR-ABL1</i>) as a cytogenetic abnormality. He was treated with ALL induction chemotherapy and imatinib and achieved complete remission, then relapsed twice and expired shortly after the last CNS relapse.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2048-2055
Author(s):  
A. Cignetti ◽  
E. Bryant ◽  
B. Allione ◽  
A. Vitale ◽  
R. Foa ◽  
...  

CD34+ hematopoietic stem cells from normal individuals and from patients with chronic myelogenous leukemia can be induced to differentiate into dendritic cells (DC). The aim of the current study was to determine whether acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells could be induced to differentiate into DC. CD34+ AML-M2 cells with chromosome 7 monosomy were cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor  (TNF), and interleukin-4 (IL-4). After 3 weeks of culture, 35% of the AML-M2 cells showed DC morphology and phenotype. The DC phenotype was defined as upmodulation of the costimulatory molecules CD80 and CD86 and the expression of CD1a or CD83. The leukemic nature of the DC was validated by detection of chromosome 7 monosomy in sorted DC populations by fluorescence in situ hybridization (FISH). CD34+ leukemic cells from 2 B-ALL patients with the Philadelphia chromosome were similarly cultured, but in the presence of CD40-ligand and IL-4. After 4 days of culture, more than 58% of the ALL cells showed DC morphology and phenotype. The leukemic nature of the DC was validated by detection of the bcr-abl fusion gene in sorted DC populations by FISH. In functional studies, the leukemic DC were highly superior to the parental leukemic blasts for inducing allogeneic T-cell responses. Thus, CD34+ AML and ALL cells can be induced to differentiate into leukemic DC with morphologic, phenotypic, and functional similarities to normal DC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4276-4276
Author(s):  
Akihiro Abe ◽  
Manabu Ninomiya ◽  
Shizuka Imagama ◽  
Momoko Suzuki ◽  
Fumihiko Hayakawa ◽  
...  

Abstract We established a NOD/SCID/γc−/−(NOG mouse)-dependent human lymphoid leukemia cell line, D593, by repeated xenotransplantation of pediatric T-cell acute lymphoblastic leukemia cells with the translocation t(2;21). The cell line, D-593, could be serially transplanted from mouse to mouse over a 2-year period. D593 had the same immuno-phenotype as the original leukemia cells: positive for CD2, 5, 7, 14, and 34, and negative for CD3, 4, 8, 19, and 41a. Cytoplasmic CD3 was positive and the rearrangement of T-cell receptor was detected by Southern blot analysis. A previously unreported translocation of t(2;21)(q11;q22) was observed in both the original patient sample and D593. The split signal of RUNX1 was detected by fluorescence in site hybridization in D593 indicating the involvement of RUNX1. Using 3′-RACE and RT-PCR analysis, we identified novel chimeric transcripts of RUNX1-LAF4 joining exon 7 of RUNX1 to exon 4 of LAF4. In the transplanted NOG mice, D593 homed into the trabecular endosteal region of bone marrow (BM), and proliferated from the endosteum to medulla. At the late stage of engraftment, the BM was filled with human lymphoblasts and metastases into the trabecular of the spleen and Glisson’s sheath of the liver were also observed. These findings suggest that D593 is a useful cell line to study not only the leukemia-related biology of RUNX1-LAF4 but also the novel therapeutic model against core-binding factor (CBF) leukemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 618-618
Author(s):  
Jennifer L. Rocnik ◽  
Melanie Cornejo ◽  
Benjamin H. Lee ◽  
Rachel Okabe ◽  
Elizabeth McDowell ◽  
...  

Abstract Leukemias are often associated with aberrant tyrosine kinase activity that occurs as a result of chromosomal translocations. These mutations are able to confer a proliferative and survival advantage to leukemic cells, as well as cooperate with other mutations that impair cell differentiation, thus leading to the development of leukemia. NUP214-ABL1 is one such recently identified fusion gene that is generated by episomal amplification. The presence of the fusion was recently identified in approximately 6% of patients with T-cell acute lymphoblastic leukemia (T-ALL). By the use of a murine retroviral bone marrow transplantation model we have demonstrated that mice transplanted with NUP214-ABL1 transduced bone marrow cells developed either a myeloproliferative disorder (MPD) with a disease latency of 70 to 118 days or a T cell lymphoblastic leukemia with a disease latency of 115 to 124 days. The myeloproliferative phenotype was characterized by splenomagaly and leukocytosis, and analysis of the histopathology revealed extramedullary hematopoiesis in the liver, lung, kidney and Peyer’s patches, and an increase of peripheral blood neutrophils. Flow cytometry of single cell suspensions from spleen and bone marrow samples of mice with a myeloproliferative phenotype demonstrated an increase of Gr-1+/Mac-1+ cells (approximately 70%). Two of the mice that were transplanted with NUP214-ABL1 transduced bone marrow cells developed T cell lymphomas that were characterized by large thymomas, a phenotype that is consistent with other models of activated tyrosine kinases over long disease latencies. Histopathological analysis of the thymi revealed effacement of normal thymic architecture as well as T cell infiltrate into the surrounding skeletal muscle. In addition, flow cytometric analysis revealed a significant increase in the CD4+/CD8+ T cell population in the thymi of these animals. No disease was observed in secondary transplant recipients following 60 days of observation. In conclusion, these results indicate that NUP214-ABL1 is able to cause either a myeloproliferative disease or a T cell lymphoma over longer latencies in mice, the latter being similar to the phenotype observed in humans with expression of the NUP214-ABL1 fusion. These findings provide a useful model for future experiments to determine if there is a contribution of other mutations together with the NUP214-ABL1 fusion towards the development of a T-ALL phenotype in mice.


2021 ◽  
Vol 10 ◽  
Author(s):  
Xuewei Li ◽  
Nana Ping ◽  
Yong Wang ◽  
Xiaoyu Xu ◽  
Lijuan Gao ◽  
...  

Philadelphia chromosome positive (Ph+) in T-lineage acute lymphoproliferative tumors is a rare event in both children and adults. In particular, it has not been reported in T-cell lymphoblastic lymphoma(T-LBL) yet. Here, we describe a patient with Ph+ T-LBL for both cytogenetic abnormality and BCR-ABL1 fusion transcript. Moreover, we review the published cases of Ph+ T-cell acute lymphoblastic leukemia (T-ALL) in the literature and summarize their clinical characteristics, management, and prognosis.


2019 ◽  
Vol 141 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Firas El Chaer ◽  
Noa G. Holtzman ◽  
Edward A. Sausville ◽  
Jennie Y. Law ◽  
Seung Tae Lee ◽  
...  

Adults with relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) treated with conventional chemotherapy have dismal outcomes. Novel immunotherapies targeting CD19, including the bispecific T-cell engager blinatumomab and chimeric antigen-receptor T (CAR-T) cells, have revolutionized the treatment of R/R B-ALL. Robust response rates to CAR-T cell therapy after blinatumomab have recently been reported, but it is unknown whether blinatumomab can be effective following failure of anti-CD19 CAR-T cell therapy. Herein, we describe a patient with Philadelphia chromosome-positive B-ALL who relapsed after CD19-directed CAR-T therapy, but subsequently responded to the combination of blinatumomab and the tyrosine kinase inhibitor ponatinib, with the achievement of a complete remission lasting 12 months.


Sign in / Sign up

Export Citation Format

Share Document