Switching Death Pathways in AML; Induction of Necrosis by Arsenic, Ascorbic Acid and Antabuse (AAA).

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4458-4458
Author(s):  
Gwen L. Nichols ◽  
Michael J. Wagner ◽  
Richard Dinnen ◽  
Robert L. Fine

Abstract Virtually all chemotherapy drugs induce apoptosis. Cancer cells have multiple mechanisms of resistance to this form of cell death. Necrosis may have fewer mechanisms of resistance, providing a rationale to discover ways to switch cell death pathways from apoptosis to necrosis. Arsenic trioxide (ATO) is clinically effective against acute promyelocytic leukemia and studies have suggested efficacy in treating other malignancies, including other leukemias. ATO increases the intracellular concentration of reactive oxygen species and inhibits glutathione (GSH) reduction resulting in redox changes which activate caspases and induce apoptosis. Ascorbic acid (AA) and other agents which reduce glutathione concentrations and increase hydrogen peroxide concentrations have been shown to enhance the antitumor activity of ATO in vitro. This combination of agents is currently in clinical trials. In previous experiments using pancreatic cancer cell lines, disulfiram (DSF), in clinical use as an inhibitor of aldehyde dehydrogenasel, was added to the ATO/AA combination. Synergistic induction of cell death occurred. We sought to test this combination in myeloid cell lines. We tested the ATO/AA/DSF (AAA) combination ([ATO], 1uM; [AA], 100uM; [DSF], 0.125 uM) on two myeloid leukemia cell lines, KG1 and K562. After treatment for 48 hours in AAA, annexin and propidium iodide staining revealed an increase in annexin(+) PI(+) cells (necrosis) in the KG1 cell line that was similar to the effect in pancreatic cancer cells. Nearly five fold more KG1 cells underwent necrosis after exposure to AAA than with arsenic alone. Arsenic combined with ascorbic acid or disulfiram yielded an approximately two fold increase in necrosis. We propose that the mechanism of action of disulfiram is through quenching peroxide (H2O2) radicals generated by ATO and AA. The reducion of DSF leads to oxidation of GSH and NADH which decrease [ATP]i, shifting the cells from apoptosis to necrosis. K562 cells were largely resistant to the triple combination, remaining in a state of cytostasis after exposure to AAA. BCR-ABL positive cell lines, such as K562, have a relative increase in intracellular ROS. The lack of necrosis in K562 was surprising, and suggests that the activated BCR-ABL kinase may override this proposed mechanism. Imatinib has been shown to induce necrosis, and combinations including imatinib will be tested in BCR-ABL positive cell lines. To study the potential safety of this combination for human trials, AAA was tested on peripheral blood stem cells from normal donors (obtained after informed consent) and did not appear to have synergistic effects on colony formation as compared to the drugs applied individually. These results suggest a new mechanism of cell death, switching from apoptosis to necrosis, that can be targeted to treat leukemias and other malignancies. More studies to confirm the mechanism of this cell death are underway.

2020 ◽  
Vol 401 (10) ◽  
pp. 1153-1165 ◽  
Author(s):  
Antônio F. da Silva Filho ◽  
Lucas B. Tavares ◽  
Maira G. R. Pitta ◽  
Eduardo I. C. Beltrão ◽  
Moacyr J. B. M. Rêgo

AbstractPancreatic ductal adenocarcinoma is one of the most aggressive tumors with a microenvironment marked by hypoxia and starvation. Galectin-3 has been evaluated in solid tumors and seems to present both pro/anti-tumor effects. So, this study aims to characterize the expression of Galectin-3 from pancreatic tumor cells and analyze its influence for cell survive and motility in mimetic microenvironment. For this, cell cycle and cell death were accessed through flow cytometry. Characterization of inside and outside Galectin-3 was performed through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), immunofluorescence, Western blot, and ELISA. Consequences of Galectin-3 extracellular inhibition were investigated using cell death and scratch assays. PANC-1 showed increased Galectin-3 mRNA expression when cultivated in hypoxia for 24 and 48 h. After 24 h in simultaneously hypoxic/deprived incubation, PANC-1 shows increased Galectin-3 protein and secreted levels. For Mia PaCa-2, cultivation in deprivation was determinant for the increasing in Galectin-3 mRNA expression. When cultivated in simultaneously hypoxic/deprived condition, Mia PaCa-2 also presented increasing for the Galectin-3 secreted levels. Treatment of PANC-1 cells with lactose increased the death rate when cells were incubated simultaneously hypoxic/deprived condition. Therefore, it is possible to conclude that the microenvironmental conditions modulate the Galectin-3 expression on the transcriptional and translational levels for pancreatic cancer cells.


1991 ◽  
Vol 276 (3) ◽  
pp. 599-605 ◽  
Author(s):  
S Yonezawa ◽  
J C Byrd ◽  
R Dahiya ◽  
J J L Ho ◽  
J R Gum ◽  
...  

The purpose of this study was to determine the quantity and nature of the mucins synthesized and secreted by four different pancreatic cancer cell lines. Well- to moderately-differentiated SW1990 and CAPAN-2 human pancreatic cancer cells were found to produce more high-Mr glycoprotein (HMG) than less-differentiated MIA PaCa-2 and PANC-1 cells. Most of the labelled HMG was secreted within 24 h. The results of chemical and enzymic degradation, ion-exchange chromatography and density-gradient centrifugation indicated that the HMG in SW1990 and CAPAN-2 cells has the properties expected for mucins, whereas much of the HMG in MIA PaCa-2 and PANC-1 cells may not be mucin, but proteoglycan. These results are consistent with immunoblots and Northern blots showing the presence of apomucin and apomucin mRNA in SW1990 and CAPAN-2 cells, but not in MIA PaCa-2 and PANC-1 cells. The Western blots and Northern blots also show that SW1990 and CAPAN-2 cells, like breast cancer cells, have the mammary-type apomucin and mRNA coded by the MUC1 gene, but lack the intestinal type apomucin and mRNA coded by the MUC2 gene. In contrast, the colon cancer cell lines tested in culture express apomucin and mRNA coded by MUC2 but not by MUC1.


2021 ◽  
Author(s):  
Julia Christine Mariglia

Ultrasonically stimulated microbubbles can enhance the localized delivery and cytotoxic effects of chemotherapy drugs to cells by transient permeabilization of cell membranes in a process called sonoporation. However, there is insufficient data investigating whether ultrasound and microbubbles (USMB) enhances the delivery and cytotoxicity of the nucleoside analog (NA) gemcitabine. To address this gap in the literature, cancer cells were sonicated using low frequency ultrasound in combination with Definity® microbubbles in the presence of NAs. Viability analyses show that gemcitabine in combination with USMB additively enhanced cell death, suggesting that these two therapies mediate cell death independent of one another. This was confirmed when USMB treatment did not enhance (nor impair) the retention of a radiolabeled NA molecule. Altogether, these data suggest that the laws of diffusion forcing small molecules across a barrier cannot solely describe the efficacy of sonoporation; there are obviously important biological factors specific to the molecule intended to be delivered to consider as well.


1994 ◽  
Vol 266 (1) ◽  
pp. R277-R283 ◽  
Author(s):  
J. P. Smith ◽  
G. Liu ◽  
V. Soundararajan ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptide cholecystokinin (CCK) is known to stimulate growth of human pancreatic cancer in a receptor-mediated fashion. The purpose of this study was to characterize the receptor responsible for the trophic effects of CCK in cancer cells. With the use of homogenates of PANC-1 human pancreatic cancer cells grown in vitro, the binding characteristics and optimal conditions of radiolabeled selective CCK-receptor antagonists ([3H]L-365,260 and [3H]L-364,718) were examined. Specific and saturable binding was detected with [3H]L-365,260, and Scatchard analysis revealed that the data were consistent for a single site of binding with a binding affinity of 4.3 +/- 0.6 nM and a binding capacity (Bmax) of 283 +/- 68 fmol/mg protein in log phase cells. Binding was dependent on protein concentration, time, temperature, and pH and was sensitive to Na+, K+, Mg2+, and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. In contrast to log phase cells, Bmax decreased by 80 and 92% in confluent and postconfluent cultures, respectively. Subcellular fractionation studies revealed that binding was in the membrane fraction. Competition experiments indicated that L-365,260 and gastrin were more effective at displacing the radiolabeled L-365,260 than CCK. No binding was detected with the CCK-A antagonist [3H]L-364,718. Assays performed with [3H]L-365,260 on five additional human pancreatic cancer cell lines in vitro and tumor tissue from xenografts in nude mice also revealed specific and saturable binding. These results provide the first identification of a CCK-B/gastrin receptor in human pancreatic cancer cells and tumors and explain the effects of CCK on the growth of this malignancy.


Autophagy ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 703-714 ◽  
Author(s):  
Longhao Sun ◽  
Limei Hu ◽  
David Cogdell ◽  
Li Lu ◽  
Chao Gao ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5407
Author(s):  
Ahmed Abdullah Ahmed ◽  
Stephen Neidle

The stabilisation of G-quadruplexes (G4s) by small-molecule compounds is an effective approach for causing cell growth arrest, followed by cell death. Some of these compounds are currently being developed for the treatment of human cancers. We have previously developed a substituted naphthalene diimide G4-binding molecule (CM03) with selective potency for pancreatic cancer cells, including gemcitabine-resistant cells. We report here that CM03 and the histone deacetylase (HDAC) inhibitor SAHA (suberanilohydroxamic acid) have synergistic effects at concentrations close to and below their individual GI50 values, in both gemcitabine-sensitive and resistant pancreatic cancer cell lines. Immunoblot analysis showed elevated levels of γ-H2AX and cleaved PARP proteins upon drug combination treatment, indicating increased levels of DNA damage (double-strand break events: DSBs) and apoptosis induction, respectively. We propose that the mechanism of synergy involves SAHA relaxing condensed chromatin, resulting in higher levels of G4 formation. In turn, CM03 can stabilise a greater number of G4s, leading to the downregulation of more G4-containing genes as well as a higher incidence of DSBs due to torsional strain on DNA and chromatin structure.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3628
Author(s):  
Manoj Amrutkar ◽  
Nils Tore Vethe ◽  
Caroline S. Verbeke ◽  
Monica Aasrum ◽  
Anette Vefferstad Finstadsveen ◽  
...  

Gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) is attributed to cancer cell-intrinsic drug processing and the impact of the tumor microenvironment, especially pancreatic stellate cells (PSCs). This study uses human PDAC-derived paired primary cancer cells (PCCs) and PSCs from four different tumors, and the PDAC cell lines BxPC-3, Mia PaCa-2, and Panc-1, to assess the fate of gemcitabine by measuring its cellular uptake, cytotoxicity, and LC-MS/MS-based metabolite analysis. Expression analysis and siRNA-mediated knockdown of key regulators of gemcitabine (hENT1, CDA, DCK, NT5C1A) was performed. Compared to PSCs, both the paired primary PCCs and cancer cell lines showed gemcitabine-induced dose-dependent cytotoxicity, high uptake, as well as high and variable intracellular levels of gemcitabine metabolites. PSCs were gemcitabine-resistant and demonstrated significantly lower drug uptake, which was not influenced by co-culturing with their paired PCCs. Expression of key gemcitabine regulators was variable, but overall strong in the cancer cells and significantly lower or undetectable in PSCs. In cancer cells, hENT1 inhibition significantly downregulated gemcitabine uptake and cytotoxicity, whereas DCK knockdown reduced cytotoxicity. In conclusion, heterogeneity in gemcitabine processing among different pancreatic cancer cells and stellate cells results from the differential expression of molecular regulators which determines the effect of gemcitabine.


Sign in / Sign up

Export Citation Format

Share Document