Inhibition of γδ T Cell Proliferation by CD4+CD25+FOXP3+ Regulatory T Cells (Treg).

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1742-1742
Author(s):  
Volker Kunzmann ◽  
Brigitte Kimmel ◽  
Judith Engert ◽  
Martin Wilhelm ◽  
Hermann Einsele

Abstract CD4+CD25+FOXP3+ regulatory T cells (Treg) are a unique population of T cells that maintain immune tolerance by suppressing self-reactive cells. Treg also contribute to the establishment of a dominant tolerance during infections and after allogeneic transplantation and suppress immune response to tumors. Increasing evidence supports the existence of elevated numbers of Treg in both solid tumors and hematological malignancies. In this study we show that Treg may also suppress other arms of an effective immune response. In vitro, purified human CD4+CD25+FOXP3+ Treg (by immunomagnetic selection) directly inhibit phosphoantigen (BrHPP)-mediated proliferation of Vγ9Vδ2 T cells, the major γδ T lymphocyte subset in humans. Importantly, suppression of γδ T cell proliferation by Treg was maintained when Treg where separated from γδ T cells by Transwells, suggesting that the inhibitory function of Treg on γδ T cell proliferation is not cell-contact independent and rather soluble factors produced by Treg contribute to this suppressive effect. However, Treg do neither influence the expression of activation markers (CD69, CD25) nor the production of IFN-γ by Vγ9Vδ2 T cells stimulated with phosphoantigen indicating that not all effector functions of Vγ9Vδ2 T cells are suppressed by Treg. As we have recently reported, phosphoantigen-mediated γδ T cell proliferation is frequently suppressed in cancer patients. This observation prompted us to address the role of Treg in controlling γδ T cell proliferation in cancer patients. An inverse correlation between Treg frequencies (i.e. the ratio between Treg and Vγ9Vδ2 T cells) in peripheral blood and phosphoantigen-mediated γδ T cell proliferation was found (mean Treg/Vγ9Vδ2 T cell ratio in cancer patients with maintained phosphoantigen-mediated γδ T cell proliferation (n=14): 4.06; mean Treg/Vγ9Vδ2 T cell ratio in cancer patients without phosphoantigen-mediated γδ T cell proliferation (n=55): 33.36)). Therefore, the Treg/Vγ9Vδ2 T cell ratio in peripheral blood can predict the capacity of γδ T cells to proliferate in response to phosphoantigens. In conclusion, these findings support a role for Treg in blunting the γδ T cell arm of the innate immune response in cancer patients and highlight the potential of Treg depletion (e.g. by anti-CD25 antibodies, cyclophosphamide or fludarabine) to promote γδ T cell mediated antitumor activity.

2002 ◽  
Vol 70 (11) ◽  
pp. 6114-6120 ◽  
Author(s):  
Michael D. Welsh ◽  
Hilary E. Kennedy ◽  
Allister J. Smyth ◽  
R. Martyn Girvin ◽  
Peter Andersen ◽  
...  

ABSTRACT WC1+ γδ T cells of Mycobacterium bovis-infected cattle are highly responsive to M. bovis sonic extract (MBSE). In mycobacterial infections of other species, γδ T cells have been shown to respond to protein and nonprotein antigens, but the bovine WC1+ γδ T-cell antigenic targets within MBSE require further definition in terms of the dominance of protein versus nonprotein components. The present study sought to characterize the WC1+ γδ T-cell antigenic targets, together with the role of interleukin-2 (IL-2), in the context of M. bovis infection. This was achieved by testing crude and defined antigens to assess protein versus nonprotein recognition by WC1+ γδ T cells in comparison with CD4+ αβ T cells. Both cell types proliferated strongly in response to MBSE, with CD4+ T cells being the major producers of gamma interferon (IFN-γ). However, enzymatic digestion of the protein in MBSE removed its ability to stimulate CD4+ T-cell responses, whereas some WC1+ γδ T-cell proliferation remained. The most antigenic protein inducing proliferation and IFN-γ secretion in WC1+ γδ T-cell cultures was found to be ESAT-6, which is a potential novel diagnostic reagent and vaccine candidate. In addition, WC1+ γδ T-cell proliferation was observed in response to stimulation with prenyl pyrophosphate antigens (isopentenyl pyrophosphate and monomethyl phosphate). High levels of cellular activation (CD25 expression) resulted from MBSE stimulation of WC1+ γδ T cells from infected animals. A similar degree of activation was induced by IL-2 alone, but for WC1+ γδ T-cell division IL-2 was found to act only as a costimulatory signal, enhancing antigen-driven responses. Overall, the data indicate that protein antigens are important stimulators of WC1+ γδ T-cell proliferation and IFN-γ secretion in M. bovis infection, with nonprotein antigens inducing significant proliferation. These findings have important implications for diagnostic and vaccine development.


2021 ◽  
Author(s):  
Aline Teixeira ◽  
Alexandria Gillespie ◽  
Alehegne Yirsaw ◽  
Emily Britton ◽  
Janice Telfer ◽  
...  

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component for optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


2008 ◽  
Vol 31 (9) ◽  
pp. 896-905 ◽  
Author(s):  
Karin Schilbach ◽  
Klaus Frommer ◽  
Sybille Meier ◽  
Rupert Handgretinger ◽  
Matthias Eyrich

2002 ◽  
Vol 168 (9) ◽  
pp. 4272-4276 ◽  
Author(s):  
Edward Y. Woo ◽  
Heidi Yeh ◽  
Christina S. Chu ◽  
Katia Schlienger ◽  
Richard G. Carroll ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6952-6962 ◽  
Author(s):  
Giulia Costa ◽  
Séverine Loizon ◽  
Marianne Guenot ◽  
Iulia Mocan ◽  
Franck Halary ◽  
...  

AbstractThe control of Plasmodium falciparum erythrocytic parasite density is essential for protection against malaria, because it prevents pathogenesis and progression toward severe disease. P falciparum blood-stage parasite cultures are inhibited by human Vγ9Vδ2 γδ T cells, but the underlying mechanism remains poorly understood. Here, we show that both intraerythrocytic parasites and the extracellular red blood cell–invasive merozoites specifically activate Vγ9Vδ2 T cells in a γδ T cell receptor–dependent manner and trigger their degranulation. In contrast, the γδ T cell–mediated antiparasitic activity only targets the extracellular merozoites. Using perforin-deficient and granulysin-silenced T-cell lines, we demonstrate that granulysin is essential for the in vitro antiplasmodial process, whereas perforin is dispensable. Patients infected with P falciparum exhibited elevated granulysin plasma levels associated with high levels of granulysin-expressing Vδ2+ T cells endowed with parasite-specific degranulation capacity. This indicates in vivo activation of Vγ9Vδ2 T cells along with granulysin triggering and discharge during primary acute falciparum malaria. Altogether, this work identifies Vγ9Vδ2 T cells as unconventional immune effectors targeting the red blood cell–invasive extracellular P falciparum merozoites and opens novel perspectives for immune interventions harnessing the antiparasitic activity of Vγ9Vδ2 T cells to control parasite density in malaria patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1804-1804
Author(s):  
David J. Chung ◽  
Marco Rossi ◽  
Jennifer Pressley ◽  
David H. Munn ◽  
James W. Young

Abstract Effective immunotherapy must overcome tolerance toward tumor antigens and avoid subsequent inhibition of stimulated antitumor immunity. The specific contribution of immune regulatory mechanisms intrinsic to dendritic cells (DCs), especially with regard to regulatory T cells (T regs), is of emerging importance. We have found that all conventional, immunogenic human DCs express the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) and that IDO protein expression and activity are markedly increased in mature compared with immature DCs. Priming of resting T cells with mature IDO+ DCs in an autologous mixed leukocyte reaction (MLR) increases the proportion of CD4+CD25+ T cells capable of suppressing allogeneic T cell proliferation in secondary MLRs as much as 10-fold above baseline (Figure 1A). Conversely, 1-methyl-tryptophan, a competitive inhibitor of IDO, dampens the inhibitory activity (Figure 1A). Further characterization of the suppressor T cells was performed after cytofluorographic sorting into CD4+CD25hi, CD4+CD25int, and CD4+CD25low/− subpopulations. Post-sort analysis revealed that the majority (>60%) of the CD4+CD25hi cells coexpressed Foxp3, which was absent in the CD4+CD25low/− cells. Separate studies showed that these Foxp3+ cells express little or no CD127 (IL-7R-alpha). Candidate CD4+CD25hi T regs inhibited DC-stimulated allogeneic T cell proliferation in a dose dependent manner, with >90% inhibition at a suppressor to responder T cell ratio of 1:1 and ∼50% inhibition at a ratio as low as 1:25 (Figure 1B). CD4+CD25low/− cells were not inhibitory, and CD4+CD25int cells exerted intermediate suppression depending on dose (Figure 1B). CD4+CD25hi T regs exert similar inhibition of autologous T cell responses to stimulation de novo by DCs. Both the priming and effector phases of T reg suppression were contact dependent. Moreover, depletion of the trace population of CD4+CD25hi T cells at the outset of autologous priming largely abolished the relative expansion of this population. These results clearly demonstrate that mature conventional human DCs support relative but significant expansion of autologous, constitutive CD4+CD25hi T cells, which coexpress Foxp3, express little or no CD127, and exert significant suppression of both allogeneic and autologous T cells stimulated de novo by DCs. Although contrary to the anticipated enrichment of IDO in immature DCs because of their expected tolerogenicity, these findings underscore the importance of regulatory mechanisms exerted by immunogenic cells like mature conventional DCs. While this may provide a physiologic means of turning off an otherwise unchecked immune response, this IDO-mediated pathway in DCs provides a rational target for optimizing host immune responses against tumor antigens. This should result in more sustained benefit from active immunotherapy with DC-based vaccines. FIGURE 1: A) T cell mediated suppression of secondary allogeneic MLR. Autologous T eels primed in the presence of the IDO inhibitor. 1-metnyl-D-tryptophan (1-MT), do not develop as much suppressor activity as T cells primed in the absence of 1-MT, resulting in loss inhibition of the secondary MLR Data presented are representative of 6 experiments. B) CD4−CD25***** T cells art potent inhibitors of T cell proliferation. FACS-sorted CD4−CD25******, CD4−CD25*****, and CD4−CD25***** T cells (‘suppressor T cells’) were added to allogeneic MLRs composed of autologous DCs + allogeneic T cells. DC to T cell ratio was 1:30. Suppressor T cell to responder T cell ratios were 1:25, 1:5, and 1:1. After 4–5 days in culture, responder T cell proliferation was assessed by measuring 3HTdR incorporation and comparing with controls containing no suppressor cells (black bar). CD4−CD25***** cells inhibited T cell proliferation in a dose-dependent manner. CD4−CD25***** cells inhibited proliferation to a lesser degree, and CD4-CD25***** cells showed no inhibition. While the CD4−CD25***** cells and to a lesser extent the CD4−CD25***** cells suppressed the proliferative response of alloreactive T cells in the MLRs, they were themselves anergic to the allogeneic DCs in proportion to CD25 and FOXP3 expression (data not shown). Values are pooled from 3 independent experiments (N=4 for each condition), and error bars indicate standard deviation of the mean. FIGURE 1:. A) T cell mediated suppression of secondary allogeneic MLR. Autologous T eels primed in the presence of the IDO inhibitor. 1-metnyl-D-tryptophan (1-MT), do not develop as much suppressor activity as T cells primed in the absence of 1-MT, resulting in loss inhibition of the secondary MLR Data presented are representative of 6 experiments. B) CD4−CD25***** T cells art potent inhibitors of T cell proliferation. FACS-sorted CD4−CD25******, CD4−CD25*****, and CD4−CD25***** T cells (‘suppressor T cells’) were added to allogeneic MLRs composed of autologous DCs + allogeneic T cells. DC to T cell ratio was 1:30. Suppressor T cell to responder T cell ratios were 1:25, 1:5, and 1:1. After 4–5 days in culture, responder T cell proliferation was assessed by measuring 3HTdR incorporation and comparing with controls containing no suppressor cells (black bar). CD4−CD25***** cells inhibited T cell proliferation in a dose-dependent manner. CD4−CD25***** cells inhibited proliferation to a lesser degree, and CD4-CD25***** cells showed no inhibition. While the CD4−CD25***** cells and to a lesser extent the CD4−CD25***** cells suppressed the proliferative response of alloreactive T cells in the MLRs, they were themselves anergic to the allogeneic DCs in proportion to CD25 and FOXP3 expression (data not shown). Values are pooled from 3 independent experiments (N=4 for each condition), and error bars indicate standard deviation of the mean.


2015 ◽  
Vol 112 (6) ◽  
pp. E556-E565 ◽  
Author(s):  
Tanya Dimova ◽  
Margreet Brouwer ◽  
Françoise Gosselin ◽  
Joël Tassignon ◽  
Oberdan Leo ◽  
...  

γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1+ and Vδ3+ γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.


2000 ◽  
Vol 68 (7) ◽  
pp. 4264-4273 ◽  
Author(s):  
Laurent Kremer ◽  
Jérôme Estaquier ◽  
Isabelle Wolowczuk ◽  
Franck Biet ◽  
Jean-Claude Ameisen ◽  
...  

ABSTRACT It has previously been reported that inhibition of delayed-type hypersensitivity-mediating functions of T cells during mycobacterial infection in mice is haplotype dependent. In the present study, we show that Mycobacterium bovis BCG infection induced, in susceptible C57BL/6 and BALB/c mice but not in resistant C3H/HeJ and DBA/2 mice, an important splenomegaly. An in vitro defect in T-cell proliferation in response to T-cell receptor (TCR) stimulation with mitogens or anti-CD3 antibodies was associated with enhanced levels of CD4+ and CD8+ T-cell apoptosis in susceptible but not in resistant mice 2 weeks after infection. Further investigations of C57BL/6 and C3H/HeJ mice revealed that in vivo splenomegaly was associated with destruction of the lymphoid tissue architecture, liver cellular infiltrates, and increased numbers of apoptotic cells in both spleen and liver tissue sections. Infection of C57BL/6 mice but not of C3H/HeJ mice induced massive production of tumor necrosis factor alpha (TNF-α) in serum, as well as an increase in Fas and Fas ligand (FasL) expression in T cells. In vitro addition of neutralizing anti-TNF-α antibodies led to a significant reduction in CD3-induced T-cell apoptosis of both CD4+ and CD8+ T cells of C57BL/6 mice, while the blockade of Fas-FasL interactions reduced apoptosis only in CD4+ but not in CD8+ T cells. Together, these results suggest that TNF-α and Fas-FasL interactions play a role in the activation-induced cell death (AICD) process associated with a defect in T-cell proliferation of the susceptible C57BL/6 mice. T-cell death by apoptosis may represent one of the important components of the ineffective immune response against mycobacterium-induced immunopathology in susceptible hosts.


Author(s):  
Xiang Li ◽  
Liang Dong ◽  
Jiejie Liu ◽  
Chunmeng Wang ◽  
Yan Zhang ◽  
...  

BackgroundCD4+ T cells play multiple roles in controlling tumor growth and increasing IFN-γ+ T-helper 1 cell population could promote cell-mediated anti-tumor immune response. We have previously showed that low-dose DNA demethylating agent decitabine therapy promotes CD3+ T-cell proliferation and cytotoxicity; however, direct regulation of purified CD4+ T cells and the underlying mechanisms remain unclear.MethodsThe effects of low-dose decitabine on sorted CD4+ T cells were detected both in vitro and in vivo. The activation, proliferation, intracellular cytokine production and cytolysis activity of CD4+ T cells were analyzed by FACS and DELFIA time-resolved fluorescence assays. In vivo ubiquitination assay was performed to assess protein degradation. Moreover, phosphor-p65 and IκBα levels were detected in sorted CD4+ T cells from solid tumor patients with decitabine-based therapy.ResultsLow-dose decitabine treatment promoted the proliferation and activation of sorted CD4+ T cells, with increased frequency of IFN-γ+ Th1 subset and enhanced cytolytic activity in vitro and in vivo. NF-κB inhibitor, BAY 11-7082, suppressed decitabine-induced CD4+ T cell proliferation and IFN-γ production. In terms of mechanism, low-dose decitabine augmented the expression of E3 ligase β-TrCP, promoted the ubiquitination and degradation of IκBα and resulted in NF-κB activation. Notably, we observed that in vitro low-dose decitabine treatment induced NF-κB activation in CD4+ T cells from patients with a response to decitabine-primed chemotherapy rather than those without a response.ConclusionThese data suggest that low-dose decitabine potentiates CD4+ T cell anti-tumor immunity through enhancing IκBα degradation and therefore NF-κB activation and IFN-γ production.


Sign in / Sign up

Export Citation Format

Share Document