WP1066 Inhibits Growth of Human Cells Carrying the JAK2 V617F Mutation.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4885-4885
Author(s):  
Taghi Manshouri ◽  
Zeev Estrov ◽  
Alfonso Quintas-Cardama ◽  
Jorge Cortes ◽  
Francis Giles ◽  
...  

Abstract Myeloproliferative disorders (MPDs) are characterized by proliferation of one or more myeloid cell lineages in bone marrow and peripheral blood, with relatively preserved differentiation. Recent discovery of a dominant gain-of-function mutation in the Janus kinase 2 (JAK2) gene in patients with MPDs, involving the substitution of valine for phenylalanine at position 617 of the JAK2 protein (JAK2 V617F), represents the first acquired somatic mutation in hematopoietic stem cells described in these disorders. This discovery has opened new avenues for the development of targeted therapies for MPDs. WP1066 is a small molecule, a member of a novel class of anticancer agents whose development was based upon the backbone of AG490, a tyrphostin with activity against JAK2 V617F-expressing cell lines but limited in vivo activity. We investigated the inhibitory activity of the WP1066 against the JAK2 V617F-mutant expressing erythroid leukemia HEL cell line and peripheral blood mononuclear cells from patients with polycythemia vera (PV). WP1066 significantly inhibited the phosphorylation of JAK2 and downstream signal transduction proteins STAT3, STAT5, and ERK1/2 in a dose- and time-dependent manner. It induced a time- and dose-dependent antiproliferative and pro-apoptotic effects (activation of caspase 3, release of cytochrome c, and cleavage of PARP) in the JAK2 V617F-bearing HEL cell line in the low micromolar range. Pretreatment of cells with pan-caspase inhibitor Z-VAD abolished WP1066-induced apoptosis. The expression of apoptosis related proteins bcl-2, bax, and XIAP, however, was not changed. More important, WP1066 was effective in inhibiting cell growth in clonogenic assays of mononuclear cells harboring the JAK2 V617F mutation obtained from peripheral blood of patients with PV. We conclude that WP1066 is active both in vitro and ex vivo against cells carrying the JAK2 V617F mutation and represents a solid candidate for the treatment of JAK2 V617V-expressing MPDs.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5054-5054 ◽  
Author(s):  
Lourdes Florensa ◽  
Beatriz Bellosillo ◽  
Leonor Arenillas ◽  
Liandong Ma ◽  
Richard Walgren ◽  
...  

Abstract Abstract 5054 Introduction: The discovery of JAK2 V617F mutation in patients with myeloproliferative disorders (MPD) has opened new perspectives for the development of targeted therapies. We have studied the efficacy of a novel molecule LY2784544 with JAK2 inhibitory activity in the in vitro growth of myeloid progenitors from JAK2 V617F-positive polycythemia vera (PV) patients. Objectives: To investigate the efficacy of LY2784544 in the inhibition of endogenous(e)BFU-E and CFU-GM growth in PV patients. Methods: In vitro cultures in semisolid media were performed from peripheral blood mononuclear cells (PBMC) of 6 PV patients who had never received cytoreductive treatment (4 patients with homozygous JAK2 V617F and 2 patients with heterozygous JAK2 V617F). PBMC were suspended in methylcellulose (Methocult. StemCell, Vancouver, Canada) without the addition of EPO and containing 0–30.0 μM LY2784544 drug. Concurrent plates containing EPO were plated as control cultures. The medium was distributed in multidishes and they were incubated at 37° with 5% CO2 and 95% humidity. Hemoglobinized colonies and granulomonocytic colonies were counted on day 14 by standard criteria (BFU-E defined by an aggregate of >50 hemoglobinized cells or three or more erythroid subcolonies and CFU-GM was defined by an aggregate of >50 cells). Each in vitro assay was performed in duplicate. DNA was obtained from peripheral blood granulocytes from each patient to quantify the JAK2 V617F allele burden at the time of culture assay. Results: LY2784544, at concentrations ranging from 0.03–30.0 μM, inhibited growth of unselected peripheral blood eBFU-E and CFU-GM from PV patients carrying the JAK2 V617F mutation in a dose-dependent manner, although without achieving complete inhibition of all colonies (fig.1). Conclusions: In vitro studies show that LY2784544 decreases the eBFU-E and CFU-GM growth in therapy-naive JAK2 V617F positive PV patients. Our data suggest that LY2784544 may be a candidate for the treatment of MPD carrying the JAK2 V617F mutation. Disclosures: Ma: Eli Lilly and Company: Employment. Walgren:Eli Lilly and Company: Employment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5228-5228
Author(s):  
Kohtaro Toyama ◽  
Norifumi Tsukamoto ◽  
Akio Saito ◽  
Hirotaka Nakahashi ◽  
Yoko Hashimoto ◽  
...  

Abstract Background The gain-of-function point mutation in Janus kinase 2 exon 14 gene (JAK2-V617F) influences the diagnosis of bcr/abl-negative chronic myeloproliferative disorders (CMPDs). We previously reported that analyzing platelets is advantageous in detecting the JAK2-V617F mutation, particularly in essential thrombocythemia (ET), when compared to granulocytes. However, there have been few reports analyzing the JAK2-V617F mutation in erythroid lineage cells, and comparing the mutation status in all three lineages. Method Study protocols were approved by the Institutional Review Board of Gunma University Hospital, and written informed consent was obtained from all the patients. Heparinized peripheral blood was obtained from 113 patients with CMPDs (82 with ET, 25 with polycythemia vera (PV), and 6 with primary myelofibrosis (PMF). After centrifugation, platelets were collected from the upper plasma layer. Remaining blood was mixed with Hank’s Balanced Salt Solution and was subjected to Ficoll-Hypaque density gradient centrifugation. Granulocytes were obtained from the pellet. Mononuclear cells were resuspended in RPMI 1640 medium; 5 × 105 cells were plated in duplicate in 1 ml of methylcellulose medium and cultured in a humidified atmosphere of 5 % of carbon dioxide at 37°C for 14 days in the presence of erythropoietin to obtain erythroid colonies (BFU-E). T-cells were obtained from the remaining mononuclear cells using anti-CD3 immunoconjugated magnetic beads. After extraction of DNA from granulocytes, T-cells and BFU-E, and RNA extraction from granulocytes and platelets, PCR amplification and sequencing of exon 14 of the Jak2 gene was performed to confirm the presence of JAK2-V617F mutations. To confirm the mutation status of granulocytes, T-cells and BFU-E, allele-specific PCR (AS-PCR) was performed. Results For ET, 57 out of 82 patients (69.5%) had the JAK2-V617F mutation. In the 57 patients with the JAK2-V617F mutation, 38 (67%) had the mutation in all three lineages, 5 had the mutation in granulocytes and platelets, 2 had the mutation in platelets and BFU-E, 10 patients had the mutation only in platelets and 2 patients had the mutation only in BFU-E. In contrast, for PV, 22/25 patients (88%) had the JAK2-V617F mutation. Of note, in 22 patients having JAK2-V617F mutation, 20 (91%) were JAK2-V617F mutation-positive in all three lineages; the remaining two patients had the mutation in either platelets or BFU-E. The frequency of JAK2-V617F in all three lineages was significantly higher in PV than in ET (p < 0.05). For PMF, 5 of 6 patients had the mutation in granulocytes, and 3 of these had it in all three lineages. Conclusion Among JAK2-V617F mutation-positive CMPDs, most PV patients had the JAK2-V617F mutation in all three lineages, thus suggesting that the JAK2-V617F mutation occurs in progenitor cell(s) common to granulocytes, platelets and erythrocytes. In contrast, only 67% of ET patients had the JAK2-V617F mutation in three lineages; in the remaining cases, not all of the three lineages have the mutation. This difference in lineages showing the JAK2-V617F mutation between the ET and PV may be related to the pathophysiological differences in ET and PV. Furthermore, the heterogeneous mutation status in ET may be related to its heterogeneous clinical manifestation.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Etsuko Matsubara ◽  
Jun Yamanouchi ◽  
Riko Kitazawa ◽  
Taichi Azuma ◽  
Hiroshi Fujiwara ◽  
...  

The Janus kinase (JAK) 1 and 2 inhibitor, ruxolitinib, was recently approved in Japan and has been effective in many patients with myelofibrosis (MF). Although the inhibitor decreases splenomegaly and relieves MF-related symptoms, allogeneic hematopoietic cell transplantation (HCT) remains as the only curative therapy for MF. The presence of splenomegaly has been reported as a risk factor for graft failure, delayed engraftment, and poor survival. Here, we report two elderly MF patients with massive splenomegaly and a JAK2 V617F mutation. These patients underwent splenic irradiation to decrease splenomegaly prior to HCT with a reduced-intensity conditioning (RIC) regimen. Massive splenomegaly gradually decreased by 4 Gy splenic irradiation. The subsequent RIC regimen involved 4 Gy total body irradiation and fludarabine and intravenous busulfan. In both patients, engraftment failure did not occur, and complete remission was achieved. The splenomegaly decreased, and MF-related symptoms were resolved. Furthermore, the JAK2 V617F mutation disappeared, and fibrosis in the bone marrow regressed. We suggest that splenic irradiation prior to the RIC regimen for HCT in elderly MF patients with massive splenomegaly is safe. Furthermore, the HCT protocols with splenic irradiation should be considered for patients who have not shown clinical benefits to optimal medical management such as treatment with ruxolitinib.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2578-2578
Author(s):  
Daniela Pietra ◽  
Alessandra Balduini ◽  
Carmela Marseglia ◽  
Matteo G. Della Porta ◽  
Luca Malcovati ◽  
...  

Abstract A unique gain-of-function mutation of the Janus kinase 2 (JAK2) gene has been recently described in patients with polycythemia vera (PV), essential thrombocythemia and chronic idiopathic myelofibrosis [N Engl J Med. 2005 Apr 28;352(17):1779–90]. Although the currently available data clearly demonstrate that the JAK2 V617F mutation participates in the pathogenesis of myeloproliferative disorders, the mutation’s precise place in the hierarchical order of pathogenetic events remains to be established. We have recently reported that altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of JAK2 (Blood. 2005 Aug 4; Epub ahead of print). Granulocyte CD177 (PRV1) mRNA overexpression has been initially reported as a potential marker of PV but later shown by us to rather be a marker of neutrophil activation [Br J Haematol. 2004 Sep;126(5):650–6]. In this study, we analyzed the relationship between JAK2 V617F mutation status, granulocyte CD177 mRNA expression and CD177 soluble protein level in 72 patients with PV. We also investigated the ontogeny of CD177 expression by hematopoietic cells with the aim of defining the stage of mRNA expression during myeloid, erythroid and megakaryocytic cell differentiation. Finally we studied the effect of soluble CD177 protein on hematopoietic cell proliferation and differentiation. Granulocyte CD177 mRNA expression and percentage of JAK2 V617F alleles were evaluated by quantitative Real Time PCR (qRT-PCR), while serum CD177 protein level was measured by a flow cytometry-based competitive antibody-binding assay. Liquid cultures were performed by culturing peripheral blood mononuclear cells obtained from healthy individuals and PV patients in the presence of high CD177-expressing, low CD177-expressing or CD177-depleted sera. After 12 days of culture, cells were collected, counted and evaluated for colony growth, and for flow cytometry analysis of myeloid, erythroid, megakaryocytic and CD34-positive cell subpopulations. qRT-PCR studies showed a close relationship between CD177 mRNA level and percentage of JAK2 V617F alleles (r=0.412, P<0.001). CD177 mRNA expression was almost undetectable in cell populations other than granulocytes. Studies of CFU-GM growth and differentiation indicated that CD177 mRNA expression is a late event restricted to the neutrophil stage of differentiation. Analysis of serum samples showed variable values for mean fluorescence intensity (MFI), indicating variable levels of the soluble CD177 protein in the patients studied. A very close relationship was found between granulocyte CD177 mRNA expression and soluble CD177 protein level (r=0.56, P=0.02). Incubation of mononuclear cells with serum samples showing high levels of soluble CD177 protein resulted in increased numbers of CD34-positive cells (P<0.02) and of erythroid progenitors (P<0.03). This effect was not detectable when low CD177-expressing or CD177-depleted sera were employed. These observations clearly indicate that the JAK2 V617F mutation is associated with enhanced granulocyte CD177 mRNA expression, and that this latter results in high levels of soluble CD177 protein. These elevated levels might contribute to the increased red cell production that characterizes polycythemia vera.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3506-3506 ◽  
Author(s):  
Josef T. Prchal ◽  
Ko-Tung Chang ◽  
Jaroslav Jelinek ◽  
Yongli Guan ◽  
Amos Gaikwad ◽  
...  

Abstract A single acquired point mutation of JAK2 1849G>T (V617F), a tyrosine kinase with a key role in signal transduction from growth factor receptors, is found in 70%–97% of patients with polycythemia vera (PV). In the studies of tyrosine kinase inhibitors on JAK2 1849G>T (see Gaikwad et all abstract at this meeting) we decided to study the possible therapeutic effect of these agents using native in vitro expanded cells from peripheral blood. To our surprise, the in vitro expansion of PV progenitors preferentially augmented cells without JAK2 1849G>T mutation. We used a 3 step procedure to amplify erythroid precursors in different stages of differentiation from the peripheral blood of 5 PV patients previously found to be homozygous or heterozygous for the JAK2 1849G>T mutation. In the first step (days 1–7), 106/ml MNCs were cultured in the presence of Flt-3 (50 ng/ml), Tpo (100 ng/ml), and SCF (100 ng/ml). In the second step (days 8–14), the cells obtained on day 7 were re-suspended at 106/ml in the same medium with SCF (50 ng/ml), IGF-1 (50 ng/ml), and 3 units/ml Epo. In the third step, the cells collected on day 14 were re-suspended at 106/ml and cultured for two more days in the presence of the same cytokine mixture as in the step 2 but without SCF. The cultures were incubated at 37oC in 5% CO2/95% air atmosphere and the medium renewed every three days to ensure good cell proliferation. The expanded cells were stained with phycoerythrin-conjugated anti-CD235A (glycophorin) and fluorescein isothiocyanate-conjugated anti-human-CD71 (transferrin receptor) monoclonal antibodies and analyzed by flow cytometry. The cells were divided by their differential expression of these antigens into 5 subgroups ranging from primitive erythroid progenitors (BFU-Es and CFU-Es) to polychromatophilic and orthochromatophilic erythroblasts; over 70% of harvested cells were early and late basophilic erythroblasts. The proportion of JAK2 1849G>T mutation in clonal PV granulocytes (GNC) before in vitro expansion and in expanded erythroid precursors was quantitated by pyrosequencing (Jelinek, Blood in press) and is depicted in the Table. These data indicate that in vitro expansion of PV progenitors favors expansion of erythroid precursors without JAK2 V617F mutation. Since three PV samples were from females with clonal granulocytes, erythrocytes, and platelets, experiments were underway to determine if the in vitro expanded erythroid cells were clonal PV cells without JAK2 V617F mutation, or derived from polyclonal rare circulating normal hematopoietic progenitors. The Proportion of JAK2 T Allele Patients GNC T Allele (%) Expanded Cells T Allele (%) PV1 (Female) 81 10 PV2 (Male) 77 28 PV3 (Male) 44 42 PV4 (Female) 78 19 PV5 (Female) 78 28


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 873-873
Author(s):  
Maria Eugenia Riveiro ◽  
Lucile Astorgues-Xerri ◽  
Charlotte Canet-jourdan ◽  
Mohamed Bekradda ◽  
Esteban Cvitkovic ◽  
...  

Abstract Background: Exposure of cancer cells to BET-BRD protein inhibitors has been associated with a significant downregulation of C-MYC expression, leading to suppression of the transcriptional program linked to proliferation and survival. C-MYC mRNA expression, mediated by STAT5 activation, is induced by the JAK2 (V617F) mutation (JAK2mu) in transfected BA/F3 cells (Funakoshi-Tago, et al. 2013). We selected JAK2mu leukemia-derived cell lines for preclinical evaluation of OTX015 (Oncoethix, Switzerland), a selective orally-bioavailable inhibitor of BET-BRD proteins with promising early results in an ongoing phase I study in hematologic malignancies (Herait et al, AACR 2014, NCT01713582). Material and Methods: Antiproliferative effects of OTX015 and JQ1 were evaluated in three established JAK2mu human myeloid leukemia cell lines (SET2, MUTZ8, HEL 92.1.7). GI50 (OTX015 concentration inducing 50% growth inhibition) and Emax (% cell proliferation at 6 µM OTX015) values were determined by MTT assay after 72h exposure. Protein levels were analyzed by Western blot, and RT-PCR was performed with Fast SYBR Green Master Mix on a StepOnePlus Real-Time PCR System. For cell cycle analysis, cells were stained with propidium iodide and analyzed with a FACScan flow cytometer. Induction of apoptosis was evaluated by Annexin-V. Simultaneous schedules of OTX015 combined with ruxolitinib, a JAK2 inhibitor, were evaluated. Combination index (CI) was determined using the Chou & Talalay method; CI<1 reflects synergy, CI=1 additivity and CI>1 antagonism. Results: After 72h exposure, SET2 was the most sensitive cell line (GI50=0.12 µM and Emax=15%), and HEL92.1.7 cells had a GI50=1.9 µM with an Emax=23%. MUTZ8 was the most resistant cell line with an Emax=61%. Similar GI50 and Emax values are observed with JQ1. A significant increase in the fraction of apoptotic cells was observed in SET2 cells after 72h 500 nM OTX015 exposure. Non-significant increases in Annexin-positive cells were seen in HEL92.1.7 and MUTZ8 cells. Cell cycle analysis revealed a significant increase in the percentage of SET2 cells in subG0/G1 after 24, 48, and 72h 500 nM OTX015, correlating with the increase in apoptosis. Conversely, an increase in the percent cells in the G1 phase was observed in HEL 92.1.7 cells. After 4h 500 nM OTX015, BRD2 mRNA levels were significantly increased in all three cell lines, whereas BRD3 levels were not modified. BRD4 mRNA levels increased significantly after 48h in SET2 cells. OTX015 treatment induced a transitory reduction of C-MYC mRNA levels after 4h with an increase at 24h in all cell lines. At the protein level, C-MYC decreased substantially in SET2 cells after 4h, with complete disappearance after 48h without recovery, while in the less sensitive MUTZ8 cell line, the decrease in C-MYC protein levels was transitory. Conversely, this proto-oncogene was not modified in HEL92.1.7 cells. In addition, p-STAT5 protein was downregulated by OTX015 in SET2 cells, but was increased in MUTZ8 cells after longer exposure time. Furthermore, BCL2 mRNA and protein levels decreased in SET2 cells, correlating with the apoptosis induction seen with OTX015 treatment. In HEL92.1.7 cells, P21 mRNA levels and cyclin D1 protein levels increased after 4h and 48h OTX015 treatment, respectively. Moreover, concomitant combination of OTX015 with ruxolitinib showed a highly antagonist effect (CI>7) in SET2 cells, the most sensitive cell line to both agents. On the other hand, very strong synergy was observed in HEL92.1.7 (CI=0.19) and MUTZ8 (CI=0.41), despite their low sensitivity to single agent OTX015. Conclusions. Our findings demonstrate that OTX015 exhibits potent activity against cultured leukemic cells expressing the JAK2 V617F mutation, inducing apoptosis or cell cycle arrest at submicromolar concentrations. This activity correlates with modulation of C-MYC, p-STAT5, BCL2, P21 and cyclin D1 mRNA and protein levels following OTX015 treatment. Our study highlights the novel and synergistic activity of the combination of a BRD antagonist and a JAK inhibitor in human leukemic cells harboring the JAK2 V617 F mutation, supporting the rationale for in vivo testing of OTX015 in combination with JAK inhibitors in leukemic JAK2mu models. Disclosures Riveiro: Oncoethix SA: Research Funding. Astorgues-Xerri:Oncoethix SA: Research Funding. Canet-jourdan:Oncoethix SA: Research Funding. Bekradda:Oncoethix SA: Research Funding. Cvitkovic:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Shareholder and CSO Other. Herait:Oncoethix SA: CMO and Shareholder Other. Raymond:Oncoethix SA: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052097772
Author(s):  
Qiang Ma

Objective To analyse the frequency and characteristics of the Janus kinase 2 ( JAK2) V617F mutation in patients with cerebral venous sinus thrombosis (CVST) with thrombocytosis. Methods The study enrolled CVST patients with thrombocytosis that had undergone JAK2 V617F mutation detection to determine the frequency of the JAK2 V617F mutation in this cohort. Correlations between patient demographics, whole blood cell counts, targeted sequencing results and JAK2 V617F mutation status were determined. Results A total of 23 patients were enrolled in the study: 11 (47.8%) with the JAK2 V617F mutation and 12 (52.2%) without the JAK2 V617F mutation. The mean platelet count was significantly higher in patients with the JAK2 V617F mutation than in patients without the mutation (478.1 ± 107.4 × 109/l versus 374.4 ± 54.1 × 109/l, respectively). There were no significant differences in age, sex, white blood cell count or haemoglobin level between the two groups. Other than single nucleotide polymorphisms, no hot-spot mutations associated with myeloid tumours other than the JAK2 V617F mutation were detected in four CVST patients that underwent targeted sequencing. Conclusion The JAK2 V617F mutation was frequently detected in CVST patients with thrombocytosis and it was associated with higher platelet counts.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4918-4918
Author(s):  
Sujiang Zhang ◽  
Jianyong Li ◽  
Weida Li ◽  
Junhong Song ◽  
Limin Duan ◽  
...  

Abstract Myeloproliferative Diseases (MPD) are a spectrum of pathogenetically related disorders of varying clinical manifestations, characterized by neoplastic expansion of relatively mature granulocyte, erythroid, megakaryocyte, or monocyte and eosinocyte lineage cells. Recently a novel point mutation affecting the Janus tyrosine kinase 2 (JAK2 V617F) was identified as pathogenetically mechanisms by multiple competing groups. To investigate its prevalence and clinical significance in Chinese patients with hematological malignancies, we introduced Allele-specific PCR (AS-PCR) combined with sequence analysis to screen JAK2 V617F mutation. A total of 98 Chinese MPD patients and 120 additional hematological malignancies including AML, ALL, MDS were analyzed for the JAK2 V617F mutation. 98 MPD patients were referred for PV (n=57), ET (n=18), IMF (n=12), HES (n=2) and CML (n=9). 2 ml peripheral blood samples of MPD and 5–10 ml bone marrow samples of AML, ALL, MDS at the time of initial diagnosis were obtained with informed consent and genomic DNA was isolated presently. In addition, peripheral blood samples from 20 healthy donors were also collected as control. All samples were first screened by AS-PCR. The positive samples were subsequently confirmed by sequence analysis. The results showed that JAK2 V617F mutation was detected in 43 of 57 PV patients (75.4%), 7 of 18 ET patients (38.9%) and 5 of 12 IMF patients (41.7%). None of the AML, ALL, MDS, CML was found JAK2 V617F. There is no statistical difference of JAK2 V617F positive ratio between PV, ET and IMF. Furthermore, the mutation was not detected in the HES patient and 20 healthy controls. There is no other mutations and polymorphisms throughout exon 12 of JAK2. To our knowledge, this is the first report of JAK2 V617F mutation in a number of Chinese patients with hematological malignancies especially BCR/ABL-negative MPD. The incidence of JAK2 V617F of our study is a little lower compared with other publications especially in PV patients. The main reason may be firstly attributed to ethnic difference. In addition, with more MPD patients introduced and more sensitive methods such as ARMS-PCR or Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) applied, more JAK2 V617F mutation will be identified.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4871-4871
Author(s):  
Martin Bornhaeuser ◽  
Brigitte Mohr ◽  
Uta Oelschlaegel ◽  
Peter Bornhauser ◽  
Swen Jacki ◽  
...  

Abstract Myeloproliferative disorders such as polycythemia vera (PV), essential thrombocytosis (ET) and chronic idiopathic myelofibrosis (CIMF) are clonal hematopoietic diseases with clinical similarities including the risk of transformation into acute myelogeneous leukemia. By definition, these diseases have been separated from Philadelphia chromosome positive (Ph+) CML requiring negativity for the BCR-ABL transcript in PCR studies of bone marrow or peripheral blood. Several groups independently discovered a gain of function mutation of the Janus kinase 2 (JAK2) gene in Ph-negative myeloproliferative diseases. This mutation has been associated with the proliferation of clonogenic progenitors independently of exogenous cytokine stimulation. A sixty-six year old male patient presented with moderate splenomegaly (3 cm under the costal marigin), mild anemia (11.3 g/dl), elevated lactate deyhdrogenase, an increased count of circulating CD34+ cells and a dry bone marrow aspirate. Marrow histology confirmed a prefibrotic stage of chronic idiopathic myelofibrosis (CIMF). Metaphase cytogenetics as well as BCR-ABL FISH were performed on samples from bone marrow, blood and sorted CD34+, CD3+, CD19+ and CD14+ cells from a steady-state back-up leukapheresis. The JAK2(V617F) mutation was confirmed by an allele-specific PCR assay. A screen for BCR-ABL was performed by FISH and PCR in sorted cells as well as in individual colonies (CFU-GM and CFU-E). Four Philadelphia-chromosome positive metaphases could be detected out of 86 derived from the autologous leukapheresis product harvested and cryopreserved as back-up shortly after diagnosis. The BCR-ABL translocation could be detected by fluorescence in-situ hybridisation (FISH) in 2/16 (12.5%) isolated granulocyte/macrophage colonies only whereas all erythroid colonies were negative. The JAK2 mutation was detectable in all clones and was enriched in CD34+ selected cells. The patient experienced progressive splenomegaly despite the achievement of a molecular response measured by quantitative BCR-ABL PCR after treatment with imatinib mesylate. Our in-vitro investigations suggest that the secondary BCR-ABL translocation within the myeloid compartment was of minor pathophysiological relevance in this patient with CIMF harbouring a heterozygous JAK2 mutation.


Sign in / Sign up

Export Citation Format

Share Document