BCR/ABL Stimulates WRN Helicase Activity To Facilitate DNA Double-Strand Breaks Repair.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1024-1024
Author(s):  
Artur Slupianek ◽  
Stanislaw Jozwiakowski ◽  
Dariusz Pytel ◽  
Tomasz Poplawski ◽  
Michal Nowicki ◽  
...  

Abstract DNA damage and defects in DNA repair pathways may severely predispose to genomic instability which is one of the major factors associated with the formation and progression of chronic myelogenous leukemia (CML). However, leukemia cells transfected by BCR/ABL seem to be better equipped to survive DNA damage generated by reactive oxygen species (ROS) and external factors through activation of double-strand breaks (DSBs) repair by homologous recombination (HR) and non-homologous end-joining (NHEJ). A genome-wide screen was performed to identify genes regulated by BCR/ABL kinase and involved in DSBs repair. Werner syndrome protein (WRN), which exhibits helicase and exonuclease activity, was upregulated in CML cells. WRN is capable of unwinding various DNA structures associated with progressing replication forks as well as promoting Holliday junctions formed as intermediates in DNA recombination. Moreover, the helicase can directly interact with a variety of proteins involved in DSBs repair including Ku complex (NHEJ), and RAD51 (HR). Lack of WRN protein in Werner syndrome is characterized by accumulation of DSBs, genomic instability and a high incidence of cancer. Here we present evidence that BCR/ABL induced the expression of WRN mRNA and protein by activation of c-MYC transcription and inhibition of caspase-dependent cleavage, respectively. Immunoprecipitation and pull-down studies indicated that WRN is phosphorylated by BCR/ABL, and that BCR/ABL SH2 domain interacts directly with phospho-Y1346 of WRN. Drug sensitivity assays performed after downregulation of WRN expression by shWRN in BCR/ABL-positive cells have demonstrated an increased sensitivity to genotoxic stress induced by cisplatin and oxidative stress caused by H2O2. Experiments using TUR90010 lymphoblast cell line established from a Werner syndrome patient (3724C>T) and transfected with BCR/ABL confirmed that WRN plays an important role in response to DNA damage in CML cells. Further studies revealed that BCR/ABL-positive leukemia cells exert an enhanced WRN-mediated helicase activity. Bone marrow cells derived from transgenic mice expressing the helicase-defective WRN mutant (K577M) and transfected with BCR/ABL display increased sensitivity to cisplatin compared to those obtained from the wild-type littermates. The role of WRN in BCR/ABL-induced DSBs repair pathways, HR and NHEJ, was examined. NHEJ activity was measured in nuclear cell lysates of BCR/ABL-positive leukemia cells using linearized double-stranded plasmid as a substrate. Removal of WRN by immunoprecipitation did not affect the efficacy of NHEJ reaction. HR was assessed using cells containing one copy of the modified gene for GFP containing a unique I-SceI restriction site with two stop codons as a recombination reporter and a truncated fragment of the GFP gene as a template for homologous repair. A HR event restores functional GFP expression. Downregulation of WRN protein by shRNA abrogated HR activity induced by BCR/ABL. Therefore BCR/ABL-dependent overexpression of WRN helicase seemed to be important for HR, but not NHEJ. Finally, an enhanced interaction between WRN and RAD51 upon DNA damage in BCR/ABL-positive cells supported that conclusion. In summary, BCR/ABL-mediated overexpression and enhanced activation of WRN helicase played an essential role in response of CML cells to elevated numbers of DBSs induced by oxidative and genotoxic stress.

2021 ◽  
Author(s):  
Ajay Kumar Sharma ◽  
Priyanka Shaw ◽  
Aman Kalonia ◽  
M.H. Yashavarddhan ◽  
Pankaj Chaudhary ◽  
...  

Radiation is one of the causative agents for the induction of DNA damage in biological systems. There is various possibility of radiation exposure that might be natural, man-made, intentional, or non-intentional. Published literature indicates that radiation mediated cell death is primarily due to DNA damage that could be a single-strand break, double-strand breaks, base modification, DNA protein cross-links. The double-strand breaks are lethal damage due to the breakage of both strands of DNA. Mammalian cells are equipped with strong DNA repair pathways that cover all types of DNA damage. One of the predominant pathways that operate DNA repair is a non-homologous end-joining pathway (NHEJ) that has various integrated molecules that sense, detect, mediate, and repair the double-strand breaks. Even after a well-coordinated mechanism, there is a strong possibility of mutation due to the flexible nature in joining the DNA strands. There are alternatives to NHEJ pathways that can repair DNA damage. These pathways are alternative NHEJ pathways and single-strand annealing pathways that also displayed a role in DNA repair. These pathways are not studied extensively, and many reports are showing the relevance of these pathways in human diseases. The chapter will very briefly cover the radiation, DNA repair, and Alternative repair pathways in the mammalian system. The chapter will help the readers to understand the basic and applied knowledge of radiation mediated DNA damage and its repair in the context of extensively studied NHEJ pathways and unexplored alternative NHEJ pathways.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2878-2878 ◽  
Author(s):  
Mateusz Koptyra ◽  
Scott Houghtaling ◽  
Marcus Grompe ◽  
Tomasz Skorski

Abstract Homologous recombination (HR), involving RAD51 protein, plays an important role in the response of BCR/ABL-positive leukemia cells to numerous DNA double-strand breaks (DSBs) induced by reactive oxygen species (ROS) or genotoxic treatment. Fanconi D2 protein (FANCD2), a member of the Fanconi protein family, is monoubiquitinated on K561 and phosphorylated by ATM on S222 in response to DSBs. The K561 monoubiquitinated form of FANCD2 interacts with RAD51 during HR, and phosphorylation of FANCD2 on S222 is important for activation of S phase checkpoint in response to DNA damage. Our studies detected an enhanced interaction between RAD51 and FANCD2 in BCR/ABL-positive leukemia cells in comparison to normal counterparts. In addition, although the expression of FANCD2 was stimulated by BCR/ABL and growth factors, higher levels of FANCD2 monoubiquitination was detectable in CML patient cells at chronic phase and in blast crisis, and in BCR/ABL-transformed cells in comparison to non-transformed cells. This effect was reversed after inhibition of BCR/ABL kinase with STI571. Therefore, monoubiquitination of FANCD2 may play a role in BCR/ABL-mediated leukemogenesis. BCR/ABL kinase displayed an impaired transformation potential in FANCD2-/- murine bone marrow cells in comparison to +/+ counterparts. In addition, expression of BCR/ABL kinase, but not the kinase-deficient K1172R mutant, inhibited the proliferation rate of FANCD2-/- human lymphoblast cell line. Growth ability of BCR/ABL-positive FANCD2-/- cells could be rescued by co-expression of the wild-type and S222A mutant of FANCD2, but not the K561R mutant. This observation suggested that K561 monoubiquitination, but not S222 phosphorylation might play an important role in BCR/ABL-mediated transformation. Since BCR/ABL cells employ RAD51-dependent HR to repair numerous DSBs induced by ROS, elevated expression of monoubiquitinated FANCD2 may facilitate this process. This hypothesis is supported by the observation that BCR/ABL-positive FANCD2-/- cells accumulate more DNA damage than +/+ counterparts as indicated by enzymatic assays converting oxidative DNA lesions into gaps detectable by comet assay. In addition, enhanced oxidative DNA damage in BCR/ABL-positive FANCD2-/- cells produced a variety of DNA lesions including abasic sites, and single- and double-strand breaks assessed by neutral comet assay. Moreover, BCR/ABL-positive FANCD2-/- cells accumulated higher numbers of DSBs detected by γ-H2AX immunostaining and displayed discrete apoptosis. In conclusion we hypothesize that monoubiquitination of FANCD2 may play a role in the initial steps of BCR/ABL dependent leukemogenesis, probably due to its ability to interact with RAD51 and facilitate HR repair of an excess of spontaneous DSBs induced by ROS.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 120-120
Author(s):  
Tatjana Stankovic ◽  
Davies Nicholas ◽  
Marwan Kwok ◽  
Edward Smith ◽  
Eliot Yates ◽  
...  

Abstract Ataxia Telangiectasia Mutated (ATM) protein coordinates responses to DNA double strand breaks (DSBs) and the ATM-null status caused by biallelic ATM gene inactivation in chronic lymphocytic leukemia (CLL) results in resistance to p53-dependent apoptosis. Accordingly, alternative strategies to target ATM-null CLL are needed. ATM is a serine/threonine protein kinase that synchronises rapid DNA damage response (DDR) to DNA double strand breaks (DSBs) with activation of cell cycle checkpoints, DNA repair and apoptosis via p53 activation. ATM-null cells are defective in a type of DSB repair that involves homologous recombination and rely on co-operating and compensatory DNA repair pathways for their survival. Therefore, inhibition of DNA repair pathways to which CLL cells with loss of ATM signalling become addicted could provide ‘synthetic lethality’ and induce tumour specific killing. Indeed, we have recently shown that inhibition of a single strand break protein PARP induces differential killing of ATM-null CLL tumours. Here we expand the concept of synthetic lethality in ATM-null CLL and address the question of whether ATM-null deficient CLL cells can be targeted by inhibition of the ATR protein that governs responses to post-replicative damage and co-operates with ATM. First, we addressed the status of the ATR pathway in primary CLL cells and consistent with previous findings we observed that initiation of cell cycling is required for both ATR upregulation and activation of ATR target Chk1 in response to replicating stress inducing agent hydroxyurea. We then proceeded with testing viability of the isogenic CLL cell line CII, with and without stable ATM knock down, in the presence or absence of increasing doses of ATR inhibitor AZD6738. We observed a uniform loss of cellular viability in the presence of 1 or 3 μM of inhibitor in ATM-null cells but not in the ATM-wt counterpart. Similar observation was made in primary CLL cells initiated to cycle in the presence of stimulatory oligonucleotide-ODN2006/IL2 support. To confirm the cytotoxic effect of AZD6738 in vivo we used an ATM null primary CLL xenograft model. Representative primary CLL tumour cells with 15% bialleic ATM inactivation, as assessed by percentage of 11q deletion and allelic frequency of ATM mutation 4220T>C, was engrafted in the presence of activated autologous T lymphocytes into 10 NOG mice. Upon detection of engraftment in peripheral blood, animals were treated by oral administration of either AZD6738 (50mg/kg) or vehicle alone over a 2 week period, and tumour load measured by FACS analysis of CD45+ CD19+ human cells in infiltrated spleens. We observed a reduction in tumour cell numbers in AZD6738-treated compared to vehicle-treated spleens and current investigations are underway to determine whether this difference can be attributed to the selective disappearance of CLL population with biallelic ATM loss. We suggest that targeting ATR pathway provides an attractive approach for selective killing of ATM-null CLL cells and that this approach should be considered as a future therapeutic strategy for this CLL subtype. Disclosures: Off Label Use: ATR inhibitor AZD6738 targets ATM-null phenotype inducing synthetic lethality. Jeff:AstraZeneca Pharmaceuticals: Employment, Patents & Royalties. Lau:AstraZeneca Pharmaceuticals: Employment.


2020 ◽  
Vol 117 (21) ◽  
pp. 11513-11522 ◽  
Author(s):  
Jessica M. Stringer ◽  
Amy Winship ◽  
Nadeen Zerafa ◽  
Matthew Wakefield ◽  
Karla Hutt

Female fertility and offspring health are critically dependent on an adequate supply of high-quality oocytes, the majority of which are maintained in the ovaries in a unique state of meiotic prophase arrest. While mechanisms of DNA repair during meiotic recombination are well characterized, the same is not true for prophase-arrested oocytes. Here we show that prophase-arrested oocytes rapidly respond to γ-irradiation–induced DNA double-strand breaks by activating Ataxia Telangiectasia Mutated, phosphorylating histone H2AX, and localizing RAD51 to the sites of DNA damage. Despite mobilizing the DNA repair response, even very low levels of DNA damage result in the apoptosis of prophase-arrested oocytes. However, we show that, when apoptosis is inhibited, severe DNA damage is corrected via homologous recombination repair. The repair is sufficient to support fertility and maintain health and genetic fidelity in offspring. Thus, despite the preferential induction of apoptosis following exogenously induced genotoxic stress, prophase-arrested oocytes are highly capable of functionally efficient DNA repair. These data implicate DNA repair as a key quality control mechanism in the female germ line and a critical determinant of fertility and genetic integrity.


2011 ◽  
Vol 39 (6) ◽  
pp. 1715-1718 ◽  
Author(s):  
Christopher J. Hutchison

Progeroid laminopathies are characterized by the abnormal processing of lamin A, the appearance of misshapen nuclei, and the accumulation and persistence of DNA damage. In the present article, I consider the contribution of defective DNA damage pathways to the pathology of progeroid laminopathies. Defects in DNA repair pathways appear to be caused by a combination of factors. These include abnormal epigenetic modifications of chromatin that are required to recruit DNA repair pathways to sites of DNA damage, abnormal recruitment of DNA excision repair proteins to sites of DNA double-strand breaks, and unrepairable ROS (reactive oxygen species)-induced DNA damage. At least two of these defective processes offer the potential for novel therapeutic approaches.


2006 ◽  
Vol 17 (12) ◽  
pp. 5185-5197 ◽  
Author(s):  
J. Sebastian Yakisich ◽  
Pamela Y. Sandoval ◽  
Tara L. Morrison ◽  
Geoffrey M. Kapler

The ribosomal DNA origin binding protein Tif1p regulates the timing of rDNA replication and is required globally for proper S-phase progression and division of the Tetrahymena thermophila macronucleus. Here, we show that Tif1p safeguards chromosomes from DNA damage in the mitotic micronucleus and amitotic macronucleus. TIF1p localization is dynamically regulated as it moves into the micro- and macronucleus during the respective S phases. TIF1 disruption mutants are hypersensitive to hydroxyurea and methylmethanesulfonate, inducers of DNA damage and intra-S-phase checkpoint arrest in all examined eukaryotes. TIF1 mutants incur double-strand breaks in the absence of exogenous genotoxic stress, destabilizing all five micronuclear chromosomes. Wild-type Tetrahymena elicits an intra-S-phase checkpoint response that is induced by hydroxyurea and suppressed by caffeine, an inhibitor of the apical checkpoint kinase ATR/MEC1. In contrast, hydroxyurea-challenged TIF1 mutants fail to arrest in S phase or exhibit caffeine-sensitive Rad51 overexpression, indicating the involvement of TIF1 in checkpoint activation. Although aberrant micro- and macronuclear division occurs in TIF1 mutants and caffeine-treated wild-type cells, TIF1p bears no similarity to ATR or its substrates. We propose that TIF1 and ATR function in the same epistatic pathway to regulate checkpoint responses in the diploid mitotic micronucleus and polyploid amitotic macronucleus.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Deepti Sharma ◽  
Louis De Falco ◽  
Sivaraman Padavattan ◽  
Chang Rao ◽  
Susana Geifman-Shochat ◽  
...  

AbstractThe poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis.


Author(s):  
Sang-Min Jang ◽  
Christophe E. Redon ◽  
Haiqing Fu ◽  
Fred E. Indig ◽  
Mirit I. Aladjem

Abstract Background The p97/valosin-containing protein (VCP) complex is a crucial factor for the segregation of ubiquitinated proteins in the DNA damage response and repair pathway. Objective We investigated whether blocking the p97/VCP function can inhibit the proliferation of RepID-deficient cancer cells using immunofluorescence, clonogenic survival assay, fluorescence-activated cell sorting, and immunoblotting. Result p97/VCP was recruited to chromatin and colocalized with DNA double-strand breaks in RepID-deficient cancer cells that undergo spontaneous DNA damage. Inhibition of p97/VCP induced death of RepID-depleted cancer cells. This study highlights the potential of targeting p97/VCP complex as an anticancer therapeutic approach. Conclusion Our results show that RepID is required to prevent excessive DNA damage at the endogenous levels. Localization of p97/VCP to DSB sites was induced based on spontaneous DNA damage in RepID-depleted cancer cells. Anticancer drugs targeting p97/VCP may be highly potent in RepID-deficient cells. Therefore, we suggest that p97/VCP inhibitors synergize with RepID depletion to kill cancer cells.


Sign in / Sign up

Export Citation Format

Share Document