Evaluation of XL999, a Potent Inhibitor of FGFR3, for the Potential Treatment of t(4;14) Positive Multiple Myeloma.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2515-2515
Author(s):  
Suzanne Trudel ◽  
Xiu Zhi Yang ◽  
Zhi Hua Li ◽  
Sheng-ben Liang ◽  
Dana T. Aftab

Abstract Recent advances in our understanding of the molecular pathogenesis of Multiple Myeloma (MM) have provided novel therapeutic targets for treatment of this incurable malignancy. The association of Fibroblast Growth Factor Receptor 3 (FGFR3) with the t(4;14) translocation that occurs uniquely in approximately 15% of MM patients, coupled with the demonstration of the transforming potential of this receptor tyrosine kinase (RTK), make this a particularly attractive target for the development of therapeutic agents for this poor prognosis group. Indeed, inhibition of activated FGFR3 induces apoptosis and inhibits growth in mice of FGFR3-expressing MM tumors, providing further validation of this RTK as a therapeutic target in t(4;14) MM. XL999 is a novel small molecule inhibitor of kinases involved in tumor cell growth and angiogenesis, and is currently in a Phase 1 clinical trial in patients with non-small cell lung cancer. XL999 inhibits members of the class III-V RTKs, including FGFR1 and 3, VEGFR2, PDGFR? and ?, KIT, and FLT3, and exhibits pharmacodynamic target modulation, anti-angiogenesis, and efficacy in multiple tumor models in mice (Eur. J. Cancer Suppl. 2: 141). We report here the FGFR3-targeting characteristics and anti-myeloma activity of XL999. XL999 inhibits FGFR3 with low nanomolar potency in biochemical enzyme assays. Therefore, we examined the activity of XL999 in several cell-based mechanistic assays of FGFR3 activity. The IL-6 dependent cell line, B9, was engineered to express wild-type or activated mutants (Y373C, K650E, G384D and J807C) of FGFR3 found in MM. XL999 differentially inhibited FGF-mediated growth of B9 cells expressing wild-type and mutant receptors, with IC50 values in the low nM range. Growth of these cells could be rescued by IL-6, indicating selectivity of XL999 for FGFR3. The activity of XL999 against FGFR3 was also examined in t(4;14) positive MM cell lines expressing FGFR3. XL999 inhibited the proliferation and viability of KMS-11 cells (FGFR3-Y373C) and OPM-2 cells (expressing FGFR3-K650E) with low nM potency. Importantly, inhibition by XL999 was still observed in the presence of IL-6 or IGF1, potent growth factors for MM cells. In addition, XL999 potently inhibited the phosphorylation of FGFR3 in OPM-2 and KMS-11 tumors after a single oral dose in pharmacodynamic studies in nude mice. U266 and 8226 cells, which lack FGFR3 expression, displayed minimal growth inhibition by XL999, demonstrating that at effective concentrations, XL999 is selective and exhibits minimal nonspecific cytotoxicity to FGFR3 negative MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest, dose-dependent inhibition of downstream ERK phosphorylation, and induction of apoptosis in FGFR3-positive cells. In vitro analysis of XL999 combined with melphalan, bortezomib, or dexamethasone applied simultaneously to KMS11 cells indicated a strong synergistic interaction with dexamethasone, and additivity with either melphalan or bortezomib. Finally, XL999 produced cytotoxic responses in 5/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. Collectively, these results suggest that XL999 may hold potential for patients with MM, particularly in combination with other agents.

Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2941-2948 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Hong Chang ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of patients with multiple myeloma (MM) results in the ectopic expression of the receptor tyrosine kinase (RTK), fibroblast growth factor receptor 3 (FGFR3). Inhibition of activated FGFR3 in MM cells induces apoptosis, validating FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these patients, who have a poor prognosis. We describe here the characterization of a novel, small-molecule inhibitor of class III, IV, and V RTKs, CHIR-258, as an inhibitor of FGFR3. CHIR-258 potently inhibits FGFR3 with an inhibitory concentration of 50% (IC50) of 5 nM in in vitro kinase assays and selectively inhibited the growth of B9 cells and human myeloma cell lines expressing wild-type (WT) or activated mutant FGFR3. In responsive cell lines, CHIR-258 induced cytostatic and cytotoxic effects. Importantly, addition of interleukin 6 (IL-6) or insulin growth factor 1 (IGF-1) or coculture on stroma did not confer resistance to CHIR-258. In primary myeloma cells from t(4;14) patients, CHIR-258 inhibited downstream extracellular signal-regulated kinase (ERK) 1/2 phosphorylation with an associated cytotoxic response. Finally, therapeutic efficacy of CHIR-258 was demonstrated in a xenograft mouse model of FGFR3 MM. These studies support the clinical evaluation of CHIR-258 in MM.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Mariateresa Fulciniti ◽  
Pierfrancesco Tassone ◽  
Teru Hideshima ◽  
Sonia Vallet ◽  
Puru Nanjappa ◽  
...  

Abstract Decreased activity of osteoblasts (OBs) contributes to osteolytic lesions in multiple myeloma (MM). The production of the soluble Wnt inhibitor Dickkopf-1 (DKK1) by MM cells inhibits OB activity, and its serum level correlates with focal bone lesions in MM. Therefore, we have evaluated bone anabolic effects of a DKK1 neutralizing antibody (BHQ880) in MM. In vitro BHQ880 increased OB differentiation, neutralized the negative effect of MM cells on osteoblastogenesis, and reduced IL-6 secretion. In a severe combined immunodeficiency (SCID)–hu murine model of human MM, BHQ880 treatment led to a significant increase in OB number, serum human osteocalcin level, and trabecular bone. Although BHQ880 had no direct effect on MM cell growth, it significantly inhibited growth of MM cells in the presence of bone marrow stromal cells (BMSCs) in vitro. This effect was associated with inhibition of BMSC/MM cell adhesion and production of IL-6. In addition, BHQ880 up-regulated β-catenin level while down-regulating nuclear factor-κB (NF-κB) activity in BMSC. Interestingly, we also observed in vivo inhibition of MM cell growth by BHQ880 treatment in the SCID-hu murine model. These results confirm DKK1 as an important therapeutic target in myeloma and provide the rationale for clinical evaluation of BHQ880 to improve bone disease and to inhibit MM growth.


Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 303-309 ◽  
Author(s):  
Sagar Lonial

Abstract Advances in treatment options for patients with multiple myeloma have made a significant impact on the overall survival of patients and have helped achieve levels of response and duration of remission previously not achievable with standard chemotherapy-based approaches. These improvements are due, in large part, to the development of the novel agents thalidomide, bortezomib, and lenalidomide, each of which has substantial single-agent activity. In addition, a large number of second-generation agents are also in clinical development, such that the repertoire of available treatment options continues to expand. To better interpret clinical trials performed in the relapsed setting, it is important that definitions of relapse categories are used to help better pinpoint the specific benefit for a given therapy, especially in the combination therapy setting as it aids in determining if ongoing work should be continued or abandoned for a given new agent. Insights from preclinical modeling and in vitro work have identified several new combinations, new targets and second- or third-generation versions of existing targets that hold great promise in the setting of relapsed myeloma. Combinations of thalidomide, bortezomib, and lenalidomide with conventional agents or among each other have resulted in enhanced response rates and efficacy. Clinical trials of agents such as carfilzomib, pomalidomide, vorinostat, panobinostat, and elotuzomab are just a few of the many exciting new compounds that are being tested in phase 1 and phase 2 clinical trials for relapsed patients. Further clinical and translational testing are critical to better understanding how best to combine these new agents, as well as identifying patient populations that may best benefit from treatment with these developing new agents.


2019 ◽  
Vol 117 (1) ◽  
pp. 426-431
Author(s):  
Chih-Wei Lin ◽  
Jia Xie ◽  
Ding Zhang ◽  
Kyung Ho Han ◽  
Geramie Grande ◽  
...  

Herein we present a concept in cancer where an immune response is detrimental rather than helpful. In the cancer setting, the immune system is generally considered to be helpful in curtailing the initiation and progression of tumors. In this work we show that a patient’s immune response to their tumor can, in fact, either enhance or inhibit tumor cell growth. Two closely related autoantibodies to the growth factor receptor TrkB were isolated from cancer patients’ B cells. Although highly similar in sequence, one antibody was an agonist while the other was an antagonist. The agonist antibody was shown to increase breast cancer cell growth both in vitro and in vivo, whereas the antagonist antibody inhibited growth. From a mechanistic point of view, we showed that binding of the agonist antibody to the TrkB receptor was functional in that it initiated downstream signaling identical to its natural growth factor ligand, brain-derived neurotrophic factor (BDNF). Our study shows that individual autoantibodies may play a role in cancer patients.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 11-13 ◽  
Author(s):  
XG Zhang ◽  
B Klein ◽  
R Bataille

Abstract It has recently been demonstrated that interleukin-6 (IL-6) is a potent myeloma-cell growth factor in the majority of patients with multiple myeloma (MM). Using an anti-bromodeoxyuridine monoclonal antibody (MoAb) to specifically count myeloma cells in the S-phase (ie, labeling index, LI), we demonstrate that the IL-6 responsiveness of myeloma cells in vitro is directly correlated with their LI in vivo. Myeloma cells from all 13 patients with high LIs in vivo (greater than or equal to 1%) responded in vitro to IL-6, the strongest response occurring in cells from five patients with plasma-cell leukemia. In contrast, the cells of only two of eight patients with low myeloma-cell LIs in vivo (less than 1%) responded to IL-6 in vitro. After seven days of culturing with 1,000 U/mL recombinant IL-6 (rIL-6), the median LI value in the first group of patients (in vivo LI greater than or equal to 1%) was 11%, ie 11 times higher (P less than .01) than the median LI value (1%) in the second group of patients (in vivo LI less than 1%). Thus, the in vitro IL-6 responsiveness of myeloma cells is directly related to their in vivo proliferative status, and hence to the severity of the disease.


2014 ◽  
Vol 33 (1) ◽  
pp. 448-456 ◽  
Author(s):  
QI ZHANG ◽  
WEIQUN YAN ◽  
YANG BAI ◽  
HAO XU ◽  
CHANGHAO FU ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3409-3409
Author(s):  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Masood Shammas ◽  
Mariateresa Fulciniti ◽  
Yu-Tzu Tai ◽  
...  

Abstract Interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a critical role in promoting MM cell growth, survival, migration and development of drug resistance. This interaction within the bone marrow milieu is unique and its understanding is important in evaluating effects of novel agents in vitro and in vivo. We here describe a novel murine model that allows us to study the expression changes in vivo in MM cells within the human BM milieu. In this model, the green fluorescent protein (INA-6 GFP+) transduced IL-6-dependent human MM cell line, INA-6, was injected in human bone chip implanted into SCID mice. At different time points the bone chip was retrieved, cells flushed out and GFP+ MM cells were purified by CD138 MACS microbeads. Similar isolation process was used on INA-6 GFP+ cells cultured in vitro and used as control. Total RNA was isolated from these cells and gene expression profile analyzed using the HG-U133 array chip (Affymetrix) and DChip analyzer program. We have identified significant changes in expression of several genes following in vivo interaction between INA-6 and the BM microenvironment. Specifically, we observed up-regulation of genes associated with cytokines (IL-4, IL-8, IGFB 2–5) and chemokines (CCL2, 5, 6, 18, 24, CCR1, 2, 4), implicated in cell-cell signalling. Moreover genes implicated in DNA transcription (V-Fos, V-Jun, V-kit), adhesion (Integrin alpha 2b, 7, cadherin 1 and 11) and cell growth (CDC14, Cyclin G2, ADRA1A) were also up-regulated and genes involved in apoptosis and cell death (p-57, BCL2, TNF1a) were down-regulated. Using the Ingenuity Pathway Analysis the most relevant pathways modulated by the in vivo interaction between MM cells and BMSCs were IL-6, IGF1, TGF-beta and ERK/MAPK-mediated pathways as well as cell-cycle regulation and chemokine signalling. These results are consistent with previously observed in vitro cell signalling studies. Taken together these results highlight the ability of BM microenvironment to modulate the gene expression profile of the MM cells and our ability to in vivo monitor the changes. This model thus provides us with an ability to study in vivo effects of novel agents on expression profile of MM cells in BM milieu, to pre-clinically characterize their activity.


Sign in / Sign up

Export Citation Format

Share Document