Effective Telomerase Inhibition Via Expression of Dominant-Negative HTERT Leads to Altered Growth Kinetics, Elevated Apoptosis and Increased Radiosensitivity of Bcr-Abl-Positive K562 Cells In Vitro.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2935-2935
Author(s):  
Ute Brassat ◽  
Stefan Balabanov ◽  
Henning Wege ◽  
Daniel Roessler ◽  
Kerstin Borgmann ◽  
...  

Abstract Disease progression in CML is associated with accelerated telomere shortening caused by increased turnover of Bcr-Abl positive cells. We have recently proposed a model in which continuous telomere shortening is correlated with increasing genetic instability in Bcr-Abl-positive cells thus facilitating the acquisition of secondary genetic abnormalities and, as a consequence clonal succession and eventually clinical progression of the disease. Based on this hypothesis, telomerase upregulation in late stage disease is a prerequisite for prevention of replication-induced senescence in Bcr-Abl positive cells. As a consequence, treatment of CML with Telomerase inhibitors (TI) represents an attractive strategy aiming at the potential eradication of cycling CML stem cells. Therefore, we have exploited both pharmacological (small molecule inhibitor) and genetic strategies (dominant negative hTERT mutants, DN-hTERT) of telomerase inhibition in CML cells in vitro We first treated K562 cells with the pharmacological telomerase inhibitor BIBR1532 in vitro. After around 400 population doublings (PD), no differences in growth kinetics nor signs of senescence or apoptosis were observed in BIBR1532 treated cells despite of significant telomere shortening (22 base pairs (bp) per PD) compared to control cells. Furthermore, neither significant differences in mRNA expression of telomere/telomerase-associated proteins, nor accumulation of double strand breaks (DSBs) under irradiation was observed in treated cells with short telomeres as opposed to untreated control cells. The very slow shortening rate of 22bp/PD plus the lack of stigmata pointing to induction of senescence in K562 cells lead to the assumption that telomerase activity is not complete inhibited by the compound. In order to verify the potency of telomerase directed treatments in CML, we therefore expressed DN-hTERT in K562 cells. Integration of DN-hTERT led to a significant decrease in telomerase activity (measured by RQ-TRAP). Furthermore, DN-hTERT expressing cells underwent accelerated telomere shortening at a substantially higher rate (>100 bp/PD) from 15kb to around 4kb within 110 days of culture. In contrast to BIBR1532-treated cells, DN-hTERT expressing K562 cells slowed down growth kinetic in comparison to control cells after 80 days of culture. By using Annexin 5 staining, 25% of apoptotic cells could be detected in cells with critically short telomeres as compared to control cells (<3%). Finally, a significantly increased accumulation of double strand breaks (DSBs) detected by gammaH2AX foci after exposure to irradiation was observed in DN-hTERT K562 cells as compared to control cells pointing to an impaired DNA repair machinery in Bcr-Abl positive cells with disrupted telomere maintenance. In summary, the data suggest that pharmacological telomerase inhibition by BIBR1532 is insufficient to induce telomere-mediated senescence in Bcr-Abl-positive cells. However, accelerated telomere shortening, slowing down of growth kinetics, elevated apoptosis and increased radiosensitivity induced by expression of DN-hTERT indicate a therapeutic potential for telomerase-directed treatment strategies in CML.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 572-572
Author(s):  
Ute Brassat ◽  
Stefan Balabanov ◽  
Melanie Braig ◽  
Daniel Bali ◽  
Kerstin Borgmann ◽  
...  

Abstract Telomeres consist of repeat structures such as (TTAGGG)n in vertebrates and are localized at the end of chromosomes. Replication-dependent telomere shortening due to the end-replication problem can be counteracted by upregulation of an endogenous reverse transcriptase called telomerase. Increasing evidence suggests that critical telomere shortening results in genetic instability which may promote tumour evolution and telomerase activation during which critically short telomeres are stabilised and ongoing tumour growth is facilitated. In Chronic myeloid leukemia (CML) the high turnover of the malignant clone is driven by the oncogene BCR-ABL and leads to accelerated telomere shortening in chronic phase (CP) compared to telomere length in healthy individuals. Telomere shortening has been demonstrated to be correlated with disease stage, duration, prognosis and response to molecular targeted treatment. Despite of the accelerated telomere shortening observed, telomerase activity is increased in CP CML and further upregulated with progression of the disease to accelerated phase or blast crisis (AP/BC). To investigate the effect of telomerase inhibition on BCR-ABL-positive cells, we expressed a dominant-negative mutant of hTERT (vector pOS DNhTERT-IRES-GFP) in K562 cells. The cells were single sorted and clones in addition to bulk cultures were long term expanded in vitro. The expression of the transgene DNhTERT was monitored by the expression of GFP and function of DNhTERT was analyzed by measurement of telomere length (by flow-FISH) and telomerase activity (TRAP assay). Evaluation of these parameters showed the following patterns of growth kinetics and telomere biology in individual clones: Two clones lost telomere repeats and were transiently delayed in growth kinetics but eventually escaped from crisis without loss of GFP expression (indicated by a re-increase in telomere length and growth rate, group A) Three other clones lost GFP expression after initial and significant telomere reduction indicating loss of the transgene (group B). Finally, telomere length and growth kinetics of two remaining clones and of the bulk culture cells remained unaffected by expression of DN-hTERT (group C). Of note, none of the clones analyzed either died or entered cell cycle arrest. Further analyses of one clone of group A revealed impaired DNA damage response indicated by two fold increase in number of γH2AX foci in comparison to control cells. Moreover, the expression pattern of genes involved in DNA repair was significantly altered (Dual chip®). Network analysis of the altered genes using MetaCore® software confirmed p53 as a key regulator in signaling of DNA damage in these cells. CML blast crisis cell lines such as K562 are typically negative for functional p53 and p16INK4. Therefore, we went on and investigate if the presence of functional p53 is required for the induction of telomere-mediated apoptosis or senescence in BCR-ABL-positive cells. For this purpose, we restored p53 in telomerase-negative clones by using an inducible system (vector pBABE p53ERtam) in two clones from group A and group B. Induction of p53 in cells with critically short telomeres (telomere length 4–5 kb) lead to immediate induction of apoptosis while vector control cells continued to escape from crisis. These results suggest that the success of strategies aimed at telomerase inhibition in CML is dependent on the presence of functional p53 in BCR-ABL-positive cells which argues in favour of applying these strategies preferentially in CP as opposed to BC.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3857-3857
Author(s):  
Dominik G.F. Wolf ◽  
Anna M. Wolf ◽  
Christian Koppelstaetter ◽  
Holger F. Rumpold ◽  
Gert Mayer ◽  
...  

Abstract The expandability of CD4+CD25+ regulatory T-cells (Treg) has been shown in vitro and in vivo. Activation of telomerase activity is a prerequisite for clonal expansion and telomere maintenance in T-cells. There is currently no data available on the expression and function of telomerase in proliferating Treg. Analyses of telomere length by flow-FISH, real-time PCR and Southern blotting revealed that Treg isolated from healthy human volunteers have significantly shortened telomeres when compared to CD4+CD25− T-cells. However, telomere length is not further shortened in Treg isolated from the peripheral blood of cancer patients, despite the observation that the regulatory T-cell pool of these patients was significantly enlarged. To gain further insight into maintenance of telomere length of Treg, we induced in vitro proliferation of Treg by stimulation with anti-CD3 and IL-2. This led to a rapid increase of telomerase activity, as determined by PCR-ELISA. However, when we focused on the proliferating fraction of Treg using a sorting strategy based on the dilution of CFSE, we could show a significant telomere shortening in Treg with high proliferative and immmuno-suppressive capacity. Of note, proliferating CFSElow Treg are characterized by high telomerase activity, which however seems to be insufficient to avoid further telomere shortening under conditions of strong in vitro stimulation. In contrast, under conditions of in vivo expansion of Treg in cancer patients, the induction of telomerase activity is likely to compensate for further telomere erosion. These data might be of importance when considering the application of in vitro expanded Treg for the treatment of GvHD or autoimmune diseases, as telomere shortening might be associated with genomic instability.


2008 ◽  
Vol 28 (7) ◽  
pp. 2332-2341 ◽  
Author(s):  
Kalpana Kannan ◽  
Andrew D. L. Nelson ◽  
Dorothy E. Shippen

ABSTRACT Dyskerin binds the H/ACA box of human telomerase RNA and is a core telomerase subunit required for RNP biogenesis and enzyme function in vivo. Missense mutations in dyskerin result in dyskeratosis congenita, a complex syndrome characterized by bone marrow failure, telomerase enzyme deficiency, and progressive telomere shortening. Here we demonstrate that dyskerin also contributes to telomere maintenance in Arabidopsis thaliana. We report that both AtNAP57, the Arabidopsis dyskerin homolog, and AtTERT, the telomerase catalytic subunit, accumulate in the plant nucleolus, and AtNAP57 associates with active telomerase RNP particles in an RNA-dependent manner. Furthermore, AtNAP57 interacts in vitro with AtPOT1a, a novel component of Arabidopsis telomerase. Although a null mutation in AtNAP57 is lethal, AtNAP57, like AtTERT, is not haploinsufficient for telomere maintenance in Arabidopsis. However, introduction of an AtNAP57 allele containing a T66A mutation decreased telomerase activity in vitro, disrupted telomere length regulation on individual chromosome ends in vivo, and established a new, shorter telomere length set point. These results imply that T66A NAP57 behaves as a dominant-negative inhibitor of telomerase. We conclude that dyskerin is a conserved component of the telomerase RNP complex in higher eukaryotes that is required for maximal enzyme activity in vivo.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


Author(s):  
Xinrui Zhang ◽  
Mariana Bobeica ◽  
Michael Unger ◽  
Anastasia Bednarz ◽  
Bjoern Gerold ◽  
...  

Abstract Purpose High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40–47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. Methods An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X‑ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST‑1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). Results The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. Conclusion Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage.


Author(s):  
Honoka Obata ◽  
Atsushi B. Tsuji ◽  
Hitomi Sudo ◽  
Aya Sugyo ◽  
Katsuyuki Minegishi ◽  
...  

Due to their short range (2&ndash;500 nm), Auger electrons (Auger e-) have the potential to induce nano-scale physiochemical damage to biomolecules. Although DNA is the primary target of Au-ger e-, it remains challenging to maximize the interaction between Auger e- and DNA. To assess the DNA-damaging effect of Auger e- released as close as possible to DNA without chemical damage, we radio-synthesized no-carrier-added (n.c.a.) [189, 191Pt]cisplatin and evaluated both its in vitro properties and DNA-damaging effect. Cellular uptake, intracellular distribution, and DNA binding were investigated, and DNA double-strand breaks (DSBs) were evaluated by im-munofluorescence staining of &gamma;H2AX and gel electrophoresis of plasmid DNA. Approximately 20% of intracellular radio-Pt was in a nucleus, and about 2% of intra-nucleus radio-Pt bound to DNA, although uptake of n.c.a. radio-cisplatin was low (0.6% incubated dose after 25-h incuba-tion), resulting in the frequency of cells with &gamma;H2AX foci was low (1%). Nevertheless, some cells treated with radio-cisplatin had &gamma;H2AX aggregates unlike non-radioactive cisplatin. These findings suggest n.c.a. radio-cisplatin binding to DNA causes severe DSBs by release of Auger e- very close to DNA without chemical damage by carriers. Efficient radio-drug delivery to DNA is necessary for successful clinical application of Auger e-.


2010 ◽  
Vol 191 (7) ◽  
pp. 1299-1313 ◽  
Author(s):  
Jose A. Palacios ◽  
Daniel Herranz ◽  
Maria Luigia De Bonis ◽  
Susana Velasco ◽  
Manuel Serrano ◽  
...  

Yeast Sir2 deacetylase is a component of the silent information regulator (SIR) complex encompassing Sir2/Sir3/Sir4. Sir2 is recruited to telomeres through Rap1, and this complex spreads into subtelomeric DNA via histone deacetylation. However, potential functions at telomeres for SIRT1, the mammalian orthologue of yeast Sir2, are less clear. We studied both loss of function (SIRT1 deficient) and gain of function (SIRT1super) mouse models. Our results indicate that SIRT1 is a positive regulator of telomere length in vivo and attenuates telomere shortening associated with aging, an effect dependent on telomerase activity. Using chromatin immunoprecipitation assays, we find that SIRT1 interacts with telomeric repeats in vivo. In addition, SIRT1 overexpression increases homologous recombination throughout the entire genome, including telomeres, centromeres, and chromosome arms. These findings link SIRT1 to telomere biology and global DNA repair and provide new mechanistic explanations for the known functions of SIRT1 in protection from DNA damage and some age-associated pathologies.


1985 ◽  
Vol 5 (12) ◽  
pp. 3331-3336
Author(s):  
K Y Song ◽  
L Chekuri ◽  
S Rauth ◽  
S Ehrlich ◽  
R Kucherlapati

We examined the effect of double-strand breaks on homologous recombination between two plasmids in human cells and in nuclear extracts prepared from human and rodent cells. Two pSV2neo plasmids containing nonreverting, nonoverlapping deletions were cotransfected into cells or incubated with cell extracts. Generation of intact neo genes was monitored by the ability of the DNA to confer G418r to cells or Neor to bacteria. We show that double-strand breaks at the sites of the deletions enhanced recombination frequency, whereas breaks outside the neo gene had no effect. Examination of the plasmids obtained from experiments involving the cell extracts revealed that gene conversion events play an important role in the generation of plasmids containing intact neo genes. Studies with plasmids carrying multiple polymorphic genetic markers revealed that markers located within 1,000 base pairs could be readily coconverted. The frequency of coconversion decreased with increasing distance between the markers. The plasmids we constructed along with the in vitro system should permit a detailed analysis of homologous recombinational events mediated by mammalian enzymes.


Sign in / Sign up

Export Citation Format

Share Document