In Vitro Aging of Rat Mesenchymal Stem Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4066-4066
Author(s):  
Xiaoyan Zhang ◽  
Jianyong Li ◽  
Yujie Wu ◽  
Jun Xia ◽  
Yaping Zhang ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) are now used in repair medicine and transplantation because of its multipotency and immunomodulatory effect. They need in vitro expansion to get adequate number for clinical use. Human MSCs had been observed to enter senescence during in vitro culture. We evaluated that the same phenomenon existed during long term culture of rat MSCs. Methods Bone marrow from ten male Sprague-Dawley (SD) rats (198±2.12g) were cultured and nonadherent cells were removed three days later. MSCs were identified by osteogenic differentiation and adipocytic differentiation. Cells of each passage were detected for morphology by Wright’s staining, ultrastructure by scanning electron microscope, growth curve by CCK-8 kits detection, osteogenic differentiation and von kossa staining, adipocytic differentiation and oil red staining, βgalactosidase staining, quantitative assay of p16INK4a gene. Results Rat MSCs were Fusiform shaped or polygon. Cells were becoming flatter and bigger during passaging. More swelling endoplasmic reticulum and demyelinate mitochondrion were observed by scanning electron microscope during passaging. The proliferation of the cells slowed from the 6th passage and stopped at the 8th or 9th passage. The positive rate of βgalactosidase staining and p16INK4a gene increased in cells after 5th passage. Osteogenic and adipocytic potential were attenuated in cells after 6th passage. Conclusions MSCs enter senescence during long term culture. Their potential of proliferation and multipotency dropped.

Author(s):  
Gao Fengming

Transmission electron microscope(TEM) and scanning electron microscope(SEM) were widely used in experimental tumor studies. They are useful for evaluation of cellular transformation in vitro, classification of histological types of tumors and treating effect of tumors. We have obtained some results as follows:1. Studies on the malignant transformation of mammalian cells in vitro. Syrian golden hamster embryo cells(SGHEC) were transformed in vitro by ThO2 and/or ore dust. In a few days after dust added into medium, some dust crystals were phagocytized. Two weeks later, malignant transformation took place. These cells were of different size, nuclear pleomorphism, numerous ribosomes, increasing of microvilli on cell surface with various length and thickness, and blebs and ruffles(Figs. 1,2). Myelomonocytic leukemic transformation of mouse embryo cells(MEC) was induced in vitro by 3H-TdR. Transformed cells were become round from fusiform. The number of mitochondria and endoplasmic reticulum was reduced, ribosomes and nucleoli increased, shape of nuclei irregular, microvilli increased, and blebs and ruffles appeared(Fig. 3).


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 339
Author(s):  
Tobias Grossner ◽  
Uwe Haberkorn ◽  
Tobias Gotterbarm

First-line analgetic medication used in the field of musculoskeletal degenerative diseases, like Nonsteroidal anti-inflammatory drugs (NSAIDs), reduces pain and prostaglandin synthesis, whereby peptic ulcers are a severe adverse effect. Therefore, proton pump inhibitors (PPI) are frequently used as a concomitant medication to reduce this risk. However, the impact of NSAIDs or metamizole, in combination with PPIs, on bone metabolism is still unclear. Therefore, human mesenchymal stem cells (hMSCs) were cultured in monolayer cultures in 10 different groups for 21 days. New bone formation was induced as follows: Group 1 negative control group, group 2 osteogenic differentiation media (OSM), group 3 OSM with pantoprazole (PAN), group 4 OSM with ibuprofen (IBU), group 5 OSM with diclofenac (DIC), group 6 OSM with metamizole (MET), group 7 OSM with ibuprofen and pantoprazole (IBU + PAN), group 8 OSM with diclofenac and pantoprazole (DIC + PAN), group 9 OSM with metamizole and pantoprazole (MET + PAN) and group 10 OSM with diclofenac, metamizole and pantoprazole (DIC + MET + PAN). Hydroxyapatite content was evaluated using high-sensitive radioactive 99mTc-HDP labeling. Within this study, no evidence was found that the common analgetic medication, using NSAIDs alone or in combination with pantoprazole and/or metamizole, has any negative impact on the osteogenic differentiation of mesenchymal stem cells in vitro. To the contrary, the statistical results indicate that pantoprazole alone (group 3 (PAN) (p = 0.016)) or diclofenac alone (group 5 (DIC) (p = 0.008)) enhances the deposition of minerals by hMSCS in vitro. There is an ongoing discussion between clinicians in the field of orthopaedics and traumatology as to whether post-surgical (pain) medication has a negative impact on bone healing. This is the first hMSC in vitro study that investigates the effects of pain medication in combination with PPIs on bone metabolism. Our in vitro data indicates that the assumed negative impact on bone metabolism is subsidiary. These findings substantiate the thesis that, in clinical medicine, the patient can receive every pain medication needed, whether or not in combination with PPIs, without any negative effects for the osteo-regenerative potential.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


2016 ◽  
Vol 367 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Hua-ji Jiang ◽  
Xing-gui Tian ◽  
Shou-bin Huang ◽  
Guo-rong Chen ◽  
Min-jun Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document