Transvection Mediated by the Translocated Cyclin D1 Gene in Mantle Cell Lymphoma.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4156-4156
Author(s):  
Elliot M. Epner ◽  
Hui Liu ◽  
Jing Wang ◽  
Mathew Thayer

Abstract Cyclin D1 expression in B cells is deregulated by chromosome translocations involving the immunoglobulin heavy chain (IgH) locus in mantle cell lymphoma (MCL). Gene targeting experiments produced MCL cell lines that had lost the translocated t(11;14) and no longer expressed cyclin D1. In these cyclin D1 (−) cells, the nonrearranged cyclin D1 (CCND1) locus reverts from CpG hypomethylated to hypermethylated. Reintroduction of the translocated chromosome by somatic cell hybrid fusion induces loss of methylation at the unrearranged CCND1 locus. Thus, the translocated chromosome exerts a transallelic effect on the unrearranged CCND1 locus in B cells that resembles transvection in Drosophilia. Control somatic cell fusion experiments with a nontranslocated cyclin D1 locus do not demonstrate transvection effects. We also have evidence for pairing of the translocated and nontranslocated cyclin D1 loci in MCL cell lines and MCL patient samples. This pairing is not related to DNA replication, as it is observed in flow sorted G1 cells and not in cyclin D1 expressing breast cancer cells or in B lymphocytes. In addition, to pairing of the cyclin D1 loci, we also have demonstrated translocation specific small RNAs in MCL cells upstream of the cyclin D1 gene.

Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3154-3159 ◽  
Author(s):  
M. Michaela Ott ◽  
Jirina Bartkova ◽  
Jiri Bartek ◽  
Alexander Dürr ◽  
Lars Fischer ◽  
...  

Abstract The cell cycle regulatory protein cyclin D1 is essential for G1-S phase transition in several epithelial and mesenchymal tissues but is apparently not essential in normal mature B cells. An overexpression of cyclin D1 is induced by the chromosomal translocation t(11; 14)(q13; q32), which characterizes non-Hodgkin's lymphomas (NHLs) of mantle cell type. We studied 26 cases of mantle cell lymphoma (MCL) for the expression of cyclins D1 and D3. A total of 23 lymphomas showed a nuclear staining for cyclin D1, whereas reactive B cells of residual germinal centers were constantly negative. When compared with cyclin D3, an inverse staining pattern emerged. Whereas the B cells of residual germinal centers reacted strongly positive for cyclin D3, there was low or missing expression of cyclin D3 in MCL cells. In other B-cell lymphomas (n = 55), including chronic lymphocytic leukemia, low-grade lymphomas of mucosa-associated lymphatic tissue, follicular lymphomas, and diffuse large B-cell lymphomas, no cyclin D1 expression could be detected and 89% of these cases displayed cyclin D3 positivity. Lymphoma cell lines harboring the t(11; 14) showed cyclin D1 protein but no or very low levels of cyclin D3; three other B-cell lines, a T-cell line, and peripheral blood lymphocytes strongly expressed cyclin D3 and reacted negatively for cyclin D1. We conclude that the chromosomal translocation t(11; 14) leads to an abnormal protein expression of cyclin D1 in the tumor cells of MCL and induces a consecutive downregulation of cyclin D3. In contrast to other B-NHLs, cyclin D1 and D3 expression in MCL is not related to the growth fraction.


2008 ◽  
Vol 205 (8) ◽  
pp. 1843-1858 ◽  
Author(s):  
Hui Liu ◽  
Jing Huang ◽  
Jin Wang ◽  
Shuguang Jiang ◽  
Alexis S. Bailey ◽  
...  

In mantle cell lymphoma (MCL) and some cases of multiple myeloma (MM), cyclin D1 expression is deregulated by chromosome translocations involving the immunoglobulin heavy chain (IgH) locus. To evaluate the mechanisms responsible, gene targeting was used to study long-distance gene regulation. Remarkably, these targeted cell lines lost the translocated chromosome (t(11;14)). In these MCL and MM cells, the nonrearranged cyclin D1 (CCND1) locus reverts from CpG hypomethylated to hypermethylated. Reintroduction of the translocated chromosome induced a loss of methylation at the unrearranged CCND1 locus, providing evidence of a transallelic regulatory effect. In these cell lines and primary MCL patient samples, the CCND1 loci are packaged in chromatin-containing CCCTC binding factor (CTCF) and nucleophosmin (NPM) at the nucleolus. We show that CTCF and NPM are bound at the IgH 3′ regulatory elements only in the t(11;14) MCL cell lines. Furthermore, NPM short hairpin RNA produces a specific growth arrest in these cells. Our data demonstrate transvection in human cancer and suggest a functional role for CTCF and NPM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2512-2512
Author(s):  
Lan V. Pham ◽  
Archito T. Tamayo ◽  
Linda C. Yoshimura ◽  
Waldeman Priebe ◽  
Nicholas J. Donato ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin’s lymphoma B cells (NHL-B), a lymphoma with increasing incidence over the last few decades. MCLs are classified into at least two subgroups, “classic” type of MCL and “blastoid-variant”- an even more aggressive type of MCL. Both subgroups are incurable, unusually refractory to standard chemotherapy combinations and associated with poor prognosis. New therapeutic agents with greater efficacy and less toxicity are necessary in MCL. We have shown previously that in MCL cells, the key transcription factor NF-kB, is constitutively active and maintains lymphoma cells survival. We also demonstrated that treating the MCL cells with the proteasome inhibitor bortezomib (Velcade) inhibits constitutive NF-kB activation, leading to G1 cell cycle arrest and apoptosis. Recently, a novel small molecular weight compound called WP-1066, a derivative of AG490, was synthesized by screening a synthetic library for agents that block stat3 activation. WP-1066 has shown to have anti-tumor activity in MCL cells through the inhibition of IL-6 mediated stat3 activation and NF-kB inhibition. A more effective compound called WP-1130, a derivative of WP-1066, was synthesized and is shown to be more potent than WP-1066 in MCL cell lines. Single agents are rarely effective in treating a disease like MCL; therefore, we hypothesized that the combination of bortezomib and WP-1130 would likely be more effective in MCL. We showed that MCL cells, both “classic” and “blastoid-variant”, treated in-vitro with bortezomib in conjunction with WP-1130 resulted in a synergistic growth inhibition and apoptosis induction. The drug concentrations use for bortezomib and WP-1130 that produce the synergistic effects were in the low nanomolar (nM) and micromolar (uM) ranges, respectively. Bortezomib at a concentration of 10 nM induces approximately 15% MCL apoptosis after 48 hr treatment when compare to untreated controls, while WP-1130 at a concentration of 1 uM induces 5% apoptosis. The combination of bortezomib and WP-1130 at the same concentrations induces 60% of MCL cell apoptosis. Bortezomib and WP-1130 showed efficacy in both classic and blastoid-variant MCL cell lines. The apoptotic effects in these cells were correlated with the down-regulation of bcl-2 and the up-regulation of bax proteins. The status of constitutive NF-kB was also examined after drug treatments. While a single agent treatment with low drug concentrations had only minimal effect on NF-kB inhibition, the combination of the two drugs dramatically inhibits NF-kB activation. These two drugs also synergize to inhibit cyclin D1 (a molecular signature of MCL), and c-myc (an oncogene commonly over-expressed in lymphoma B cells). Agents such as bortezomib and WP-1130, that can pharmacologically modulate key intracellular targets such as constitutively expressed NF-kB and cyclin D1 in MCL cells, may be more effective therapeutic agents for the treatment of MCL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2515-2515 ◽  
Author(s):  
Heather Gilbert ◽  
John Cumming ◽  
Josef T. Prchal

Abstract Abstract 2515 Poster Board II-492 Mantle cell lymphoma is a well defined subtype of B-cell non-Hodgkin lymphoma characterized by a translocation that juxtaposes the BCL1 gene on chromosome 11q13 (which encodes cyclin D1) next to the immunoglobulin heavy chain gene promoter on chromosome 14q32. The result is constitutive overexpression of cyclin D1 (CD1) resulting in deregulation of the cell cycle and activation of cell survival mechanisms. There are no “standard” treatments for MCL. Despite response rates to many chemotherapy regimens of 50% to 70%, the disease typically progresses after treatment, with a median survival time of approximately 3-4 years. Mantle cell lymphoma represents a small portion of malignant lymphomas, but it accounts for a disproportionately large percentage of lymphoma-related mortality. Novel therapeutic approaches are needed. In 2007, Nurtjaha-Tjendraputra described how iron chelation causes post-translational degradation of cyclin D1 via von Hippel Lindau protein-independent ubiquitinization and subsequent proteasomal degradation (1). Nurtjaha-Tjendraputra demonstrated that iron chelation inhibits cell cycle progression and induces apoptosis via proteosomal degradation of cyclin D1 in various cell lines, including breast cancer, renal carcinoma, neuroepithelioma and melanoma. Our preliminary data show similar findings in mantle cell lymphoma. To establish whether iron chelation can selectively inhibit and promote apoptosis in mantle cell derived cell lines, the human MCL cell lines Jeko-1, Mino, Granta and Hb-12; the Diffuse Large B cell lymphoma line SUDHL-6; and the Burkitt's Lymphoma lines BL-41 and DG75 were grown with media only, with two different iron chelators (deferoxamine (DFO) and deferasirox) at various concentrations (10, 20, 40, 100 and 250 μM), and with DMSO as an appropriate vehicle control. Cells were harvested at 24, 48 and 72 hours. For detection of apoptotic cells, cell-surface staining was performed with FITC-labeled anti–Annexin V antibody and PI (BD Pharmingen, San Diego, CA). Cell growth was analyzed using the Promega MTS cytotoxicity assay. CD1 protein levels were assessed using standard Western blot techniques. At 24, 48 and 72 hours of incubation with iron chelators, the mantle cell lymphoma cell lines showed significantly increased rates of apoptosis compared to the non-mantle cell lymphoma cell lines (p<0.0001 for all time points). DFO and deferasirox inhibted cell growth with an IC50 of 18 and 12 μM respectively. All of the mantle cell lines had measurable cyclin D1 levels at baseline. None of the non-mantle cell lines expressed baseline measurable cyclin D1. In the mantle cell lines, cyclin D1 protein levels were no longer apparent on western blot after 24 hours of incubation with chelation. We then added ferrous ammonium sulfate (FAS) to DFO in a 1:1 molarity ratio and to deferasirox in a 2:1 ratio, and then treated the same lymphoma cell lines with the FAS/chelator mixture and with FAS alone for 72 hours. Adding iron to the chelators completely negated all the pro-apoptotic effects that were seen with iron chelation treatment. Treating with FAS alone had no effect on cell growth or apoptosis. Iron chelation therapy with both DFO and deferasirox results in decreased cell growth, increased cellular apoptosis, and decreased cyclin D1 protein levels in vitro in mantle cell lymphoma. The cytotoxic effects are prevented by coincubation with ferrous ammonium citrate, confirming that the effects are due to iron depletion. Proposed future research includes further defining the molecular basis of iron chelation effects; studying these therapies in combination with other cancer treatments both in vitro and in vivo; and studying iron chelation therapy in mantle cell lymphoma patients. 1. Nurtjahja-Tjendraputra, E., D. Fu, et al. (2007). “Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency-mediated growth suppression.” Blood109(9): 4045–54. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 7573-7573 ◽  
Author(s):  
V. Y. Yazbeck ◽  
G. V. Georgakis ◽  
Y. Li ◽  
A. Younes

7573 Background: Mantle cell lymphoma (MCL) is a distinct type of B-cell lymphoma associated with transient response to conventional chemotherapy, continuous relapses and median survival of only 3–4 years. The mammalian target of rapamycin (mTOR) pathway is activated in many human malignancies where it regulates cyclin D1 translation. In a phase II trial, temsirolimus (CCI-779), an inhibitor of mTOR kinase used as single agent achieved an overall response rate of 38% in relapsed MCL patients. Our goal was to determine the activity and the mechanism of action of CCI-779 in MCL cell lines and to examine whether CCI-779 may synergizes with proteasome inhibitors. Methods: The activity of CCI-779 was determined in 3 mantle cell lymphoma cell lines (Jeko 1, Mino, Sp 53). Cell viability was determined by MTS assay, and autophagy by Acridine orange. Analysis of cell cycle was performed by flow cytometry and apoptosis by Annexin-V binding. Molecular changes were determined by western blot . Results: CCI-779 induced cell growth arrest in all cell lines in a time and dose dependent manner. The antiproliferative activity was due to cell cycle arrest in the G0/G1 phase followed by autophagy. CCI-779 decreased S6 phosphorylation in Jeko 1,Sp 53 indicative of mTOR inhibition. Furthermore, CCI-779 downregulated p21 expression in all three cell lines, without altering p 27 expression. Moreover, CCI-779 decreased the expression of the antiapoptotic protein cFLIP and ERK in both Jeko1 and Sp 53, but had no effect on cyclin D1 expression. The proteasome inhibitor bortezomib was also effective in all MCL cell lines, but failed to demonstrate significant synergy with CCI-779. Conclusions: The antiproliferative activity of CCI-779 in MCL is mediated by p21 downregulation and autophagy, without significant effect on cyclin D1 expression. The lack of synergy between bortezomib and CCI-779 should be confirmed using fresh MCL tumor cells. No significant financial relationships to disclose.


Blood ◽  
2014 ◽  
Vol 123 (6) ◽  
pp. 884-893 ◽  
Author(s):  
Samuel G. Katz ◽  
James L. LaBelle ◽  
Hailong Meng ◽  
Regina P. Valeriano ◽  
Jill K. Fisher ◽  
...  

Key Points Immune stimulation of cyclin D1 transgenic mice bearing Bim-deficient B cells induces an MCL phenotype. The induced lymphoma of EμCycD1CD19CREBimfl/fl mice highlights the collaborative roles of Bim deletion and cyclin D1 expression in MCL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 258-258
Author(s):  
Gaël Roué ◽  
Patricia Pérez-Galán ◽  
Mónica López-Guerra ◽  
Neus Villamor ◽  
Elias Campo ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an aggressive B lymphoid neoplasm with a mature B-cell phenotype and genetically characterized by the t(11;14)(q13;q32) leading to cyclin D1 overexpression with the consequent deregulation of cell cycle at the G1-S checkpoint. MCL cells also present a constitutive activation of the NF-kappaB pathway which leads to the overexpression of several anti-apoptotic regulators. We have analyzed sensitivity to the extrinsic apoptotic signal triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on six human MCL cell lines and primary cells from 10 MCL patients, which differ in their p53-dependent pathway status, growth characteristics and sensitivity to cytotoxic drugs. TRAIL has been shown to exert in vivo a selective anti-tumor activity with minimal toxicity on normal cells. We observed that TRAIL was able to trigger apoptosis in a majority of MCL cell lines and primary MCL tumor cells, while sparing normal peripheral B cells. TRAIL-induced cell death was characterized by a time- and dose-dependent loss of membrane potential, Bax and Bak activation, caspase activation and phophatidylserine exposure. MCL sensitivity to TRAIL was irrespective of TRAIL-R1 and TRAIL-R2 receptor levels, Bcl-2 family members or caspase regulators expression, but was closely linked to the activity of the NF-kappaB p50 factor and to the expression of c-FLIP, a NF-kappaB-regulated factor. C-FLIP accumulated into the TRAIL-dependent complex in resistant cells and its transient knockdown overcame MCL resistance to TRAIL. In parallel, NF-kappaB inhibitors differentially modulated TRAIL cytotoxicity. Indeed, sub-toxic doses of bortezomib increased TRAIL cytotoxic effects by up-regulating TRAIL-R2 receptor expression, but also led to the intracellular accumulation of c-FLIP, impeding full synergistic interaction in cells with highest c-FLIP basal level. In contrast, the IkappaB kinase (IKK) inhibitor BMS-354451 allowed to consistent reduction of NF-kappaB activity, decreased total and DISC-associated c-FLIP levels, and sensitized all MCL cells to TRAIL cytotoxic effects. These results indicate that pharmacological enhancement of MCL cells sensitivity to TRAIL does not depend on TRAIL receptors level but is rather regulated by NF-kappaB-regulated c-FLIP expression. Considering that both TRAIL and BMS-345541 have already demonstrated selective cytotoxicity against malignant cells, combining TRAIL, with pharmacological inhibitors of IkappaB kinase signaling may represent an attractive model for the design of a new and rational combination therapy for MCL.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2734-2734
Author(s):  
Kejie Zhang ◽  
Lan V Pham ◽  
Liang Zhang ◽  
Archito T. Tamayo ◽  
Zhishuo Ou ◽  
...  

Abstract Abstract 2734 Chromosomal Region Maintenance 1 (CRM1) overexpression has been associated with cancer progression and mortality in several human cancers, suggesting that activation of nuclear export may play a role in human neoplasia and may serve as a novel target for the treatment of cancers. This overexpression of CRM1 may be related to the export of most tumor suppressor and growth regulatory proteins out of the nucleus, thereby functionally inactivating them. Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma that is not yet curable. The objective of our study was to investigate the status of CRM1 in MCL, both in MCL cell lines and primary MCL cells, in comparison to normal B cells, and to evaluate the therapeutic efficiency of CRM1 inhibition in MCL in vitro and in vivo, and to elucidate the mechanism of CRM1 inhibitor-mediated MCL cell apoptosis. We used 8 established MCL cell lines and primary cells from 4 patients with relapsed/refractory MCL. KPT185 and KPT276 are novel, highly selective, drug-like small molecular CRM1 inhibitors. Western Blot analysis showed that CRM1 was expressed in both the cytoplasm and nuclei of 8 MCL cell lines. CRM1 was mainly detected in nuclei of normal resting B cells; In contrast, CRM1 was primarily detected in the cytoplasm of freshly isolated primary MCL cells from patients with relapsed/refractory MCL. In 3H-thymidine incorporation assays, inhibition of CRM1 by KPT185 resulted in a significant dose-dependent growth inhibition of 8 MCL cells, with IC50 values range between 10 nM to 120 nM. The blastoid-variant MCL cell lines (Z-138 and Rec-1) were significantly more sensitive to KPT185 than the non-blastoid variant MCL cell lines. Flow cytometry analysis with fluorescence-labeled Annexin V and propidium iodide showed that KPT185 induced MCL cells apoptosis in both time- and dose-dependent manners, but had no effect on cell cycle arrest. MCL cells treated with KPT185 for 12 hours showed caspase 3 activation and PARP cleavage. As shown in Western blot and confocal microscopy, blocking CRM1 activity by KPT185 in MCL cells up-regulated the protein expression of p53, a known CRM1-mediated export protein, and also induced CRM1 translocation to the nucleus and decreased CRM1 expression. In severe combined immunodeficient (SCID) mice bearing palpable Z-138 tumors, treatment with KPT-276 (similar structure to KPT-185 but improved animal pharmacokinetics), 50mg/kg or 150 mg/kg PO QDx5 each week, or cyclophosphamide 100 mg/kg on days 1–3, was initiated. Tumor growth was significantly inhibited (>75%) in all of treatment groups compared with vehicle control. Neutropenia and other cytotoxic-agent specific effects have not been observed in treated animals. In conclusion, CRM1 inhibitors inhibited growth of MCL cells in vitro and in vivo, and induced apoptosis of MCL cells via inhibition of CRM1 expression and blockage of its translocation with functional nuclear proteins. Our data suggest that novel CRM1 inhibitors provide a potential therapy for patients with relapsed/refractory MCL. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
L. D. Mazzuoccolo ◽  
G. A. Castro Perez ◽  
I. Sorin ◽  
A. I. Bravo

Primary cutaneous mantle cell lymphoma (MCL) is a rare cutaneous proliferation of naive pregerminal CD-5 positive B cells in the skin with no extracutaneous involvement. Overexpression of cyclin D1 is pathognomonic of this condition, and surgery and radiation therapy are the most common therapeutic options. In this case, we describe the clinical, histopathological, immunohistochemical, and molecular characteristics of a new case of primary cutaneous MCL.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 965-974 ◽  
Author(s):  
Kaoru Uchimaru ◽  
Toshiyasu Taniguchi ◽  
Miwa Yoshikawa ◽  
Shigetaka Asano ◽  
Andrew Arnold ◽  
...  

Abstract In mantle cell lymphoma, the t(11; 14)(q13; q32) and its molecular counterpart, bcl-1 rearrangement, are consistent features and lead to cyclin D1 (bcl-1, PRAD1) proto-oncogene overexpression. In order to detect cyclin D1 overexpression, we developed a simple assay involving a reverse transcription followed by competitive polymerase chain reaction (PCR). A single upstream primer was derived from a homologous region between cyclin D1 and the other D-type cyclins, cyclins D2 and D3, while three downstream primers were specific to their respective D-type cyclins. Because the upstream primer was shared in PCR amplification of the three sequences, each PCR product served as a competitor and the quantification of the target was made by comparison of the intensity of the three products. With this assay we analyzed 45 hematopoietic cell lines and 40 clinical specimens. Cyclin D1 was rarely expressed in lymphoid cell lines except in t(11; 14)(q13; q32)-bearing B-cell malignancies and/or mantle cell lymphoma, which expressed cyclin D1 predominantly. In myeloid cell lines, the levels of cyclin D1 expression varied and never exceeded the sum of cyclin D2 and D3 levels. Cyclin D3 was ubiquitously expressed while cyclins D1 and D2 were differentially used. The observations suggest that human cyclin D3 may play a fundamental role in hematopoiesis and that cyclins D1 and D2 may have different lineage- or differentiation-dependent functions. With this assay, small aliquots of clinical specimens such as 100 μL peripheral blood were enough to detect cyclin D1 overexpression without a well-controlled standard. The technique was validated as highly comparable with Northern analysis. This rapid and reliable detection of cyclin D1 overexpression may have practical clinical utility in the analysis and management of B-cell malignancies.


Sign in / Sign up

Export Citation Format

Share Document