MAPK-Activation in CD34+ CML Stem Cells Induced by Selective Abl-Inhibitors Is Not Observed Using the Combined Src/Abl-Inhibitor Dasatinib.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 652-652 ◽  
Author(s):  
Paul La Rosee ◽  
Nicolai Haertel ◽  
Thomas Klag ◽  
Heiko Konig ◽  
Ruediger Hehlmann ◽  
...  

Abstract The BCR-ABL oncoprotein promotes growth and survival by activating Ras-dependent MAPK-signalling, which can be blocked by the Abl-kinase inhibitor imatinib, the current standard treatment for chronic myelogenous leukemia (CML). However, paradoxical MAPK-activation is observed in CD34+ progenitor cells of CML patients when exposed to imatinib in the presence of growth factors. Cytokine-dependent MAPK-activation may underlie primary resistance of the leukemic stem cell to imatinib. Second generation BCR-ABL inhibitors have been developed, but their potential to modulate the MAPK has not been evaluated. Here we demonstrate differential MAPK-modulating activity of currently available ABL-inhibitors and report a cell line model mimicking paradoxical, cytokine dependent MAPK-activation in response to BCR-ABL-inhibition. CD34+ enriched mononuclear cells (MNC) derived from CML patients prior to treatment (n=5) were cultured in serum-free media in the presence of standard growth factor mix (GF). Overnight exposure of single agent or combined inhibitors (nilotinib, dasatinib), and subsequent analysis of MAPK-activation was performed. BCR-ABL-transformed Baf3 and 32D cells were grown in the presence of increasing concentrations of tyrosine kinase inhibitors up to 24 hrs. Cultures were kept either with or without Interleukin 3 (IL3). Signaling was studied after SDS-page of whole cell lysates and subsequent Western blot analysis. Inhibitor isodoses were determined using tetrazolium based proliferation assays. Results: CD34+ CML MNC show significant and dose dependent activation of MAPK1/2 in response to nilotinib ([fold change of control]; 0.2μM: 2.7±1.1, p<0.05; 1.0μM: 3.2±1.2, p<0.05). Co-treatment with imatinib tends to enhance the MAPK-activation seen with nilotinib alone. In contrast, exposure of patient cells (n=5) to dasatinib results in a significant MAPK-inhibition (12nM: 0.4±0.3, p<0.05; 60nM: 0.5±0.3, p<0.05). However, combined application of nilotinib with dasatinib overrides the MAPK-inhibitory activity of dasatinib (dasatinib: 0.4±0.3, p<0.05 vs dasatinib+nilotinib: 2.3±2; n.s.). The myeloid 32Dp210 cells when grown in the presence of IL3 reflect the results seen in primary cells with activation of MAPK1/2 in the presence of nilotinib. Time course experiments show peak-activation at 6hrs after start of treatment (0.04μM: 2.8±1.6, n.s.; 0.2μM: 2.8±1.9; n.s.). Without IL3, MAPK’s are significantly inhibited confirming the cytokine-dependence of MAPK-activation (p<0.05). This contrasts data obtained with dasatinib, which leads to MAPK-inhibition even in the presence of IL3 (12nM: 0.5±0.2, n.s., 60nM: 0.5±0.1, n.s.). In lymphoid Bafp210, nilotinib and dasatinib both effectively inhibit MAPK1/2 even in the presence of IL3, demonstrating cell context dependent MAPK-modulation in response to Abl-kinase-inhibitors. Conclusions: Nilotinib induces significant MAPK1/2-activation in CD34+ CML progenitors similar to previously reported results with imatinib. Effective MAPK-inhibition in CD34+ cells by dasatinib may underlie a possible higher stem cell activity of dasatinib. Reversal of MAPK-inhibition in combination experiments indicates that nilotinib acts through mechanisms that cannot be influenced by dasatinib. 32Dp210 cells may prove useful to study the exact mechanisms of paradoxical MAPK-activation.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 535-535 ◽  
Author(s):  
Thomas O’Hare ◽  
Christopher A. Eide ◽  
Jeffrey W. Tyner ◽  
Amie S. Corbin ◽  
Matthew J. Wong ◽  
...  

Abstract Overview: Bcr-AblT315I is detected in the majority of CML patients who relapse after dasatinib- or nilotinib-based second-line Bcr-Abl kinase inhibitor therapy. SGX70393, an azapyridine-based Abl kinase inhibitor, is effective against Bcr-Abl and Bcr-AblT315I at low nanomolar concentrations in vitro and in cell lines. Here, we comprehensively profiled SGX70393 against native and mutant Bcr-Abl in vitro and in vivo. We also used a cell-based mutagenesis screen to evaluate the resistance profile of SGX70393 alone and in combination with imatinib, nilotinib, or dasatinib. Methods: We assessed colony formation in the presence of SGX70393 by murine bone marrow infected with retroviruses for expression of Bcr-Abl, Bcr-AblT315I, or a variety of other mutants. Toxicity was tested in clonogenic assays of normal bone marrow. SGX70393 effects on cellular tyrosine phosphorylation were measured by immunoblot and FACS in primary Bcr-AblT315I cells isolated from patients with CML or Ph+ B-ALL. In vivo activity was evaluated in a xenograft model using Ba/F3 cells expressing Bcr-AblT315I. Lastly, the resistance profile of SGX70393 was evaluated alone and in dual combinations with imatinib, nilotinib, or dasatinib in a cell-based mutagenesis assay. Results: Colony formation by murine bone marrow cells expressing Bcr-AblT315I (IC50: 180 nM) was reduced by SGX70393 in a dose dependent manner, while no toxicity was observed in colony forming assays of normal human or murine mononuclear cells at concentrations up to 2 μM. Ex vivo exposure of human Bcr-AblT315I mononuclear cells to SGX70393 decreased CrkL phosphorylation, while imatinib, nilotinib, or dasatinib had no effect. SGX70393 inhibited Bcr-AblT315I-driven tumor growth in mice and this was correlated with reduced levels of pCrkL in tumor tissue, while imatinib was ineffective. A cell-based mutagenesis screen revealed a profile of resistant clones confined to four p-loop residues and position 317. SGX70393 in combination with imatinib contracted the spectrum of resistant mutations relative to either single agent, though outgrowth could not be completely suppressed. Combining SGX70393 with low concentrations of nilotinib or dasatinib narrowed the resistance profile still further (residues 248 and 255 for nilotinib; 317 for dasatinib) and, with clinically achievable doses of either second drug, completely abrogated emergence of resistant subclones. Conclusions: SGX70393, a potent inhibitor of Bcr-AblT315I, exhibits a resistance profile centered around the p-loop and residue 317 of Bcr-Abl. Remarkably, in combination with nilotinib or dasatinib, outgrowth of resistant clones is completely suppressed. Single-agent therapy with an effective T315I inhibitor may provide a viable option for patients who relapse with Bcr-AblT315I. However, as a broader spectrum of mutations accounts for imatinib resistance, patients with acquired dasatinib or nilotinib resistance may continue to harbor residual mutant clones other than T315I. Thus, the full clinical potential of SGX70393 may be realized in combinations with a second Abl kinase inhibitor. Our findings provide the first demonstration that Abl kinase inhibitor combinations that include a T315I-targeted component such as SGX70393 have the potential to pre-empt Bcr-Abl-dependent resistance.


Author(s):  
Michael J. Mauro

Resistance in chronic myelogenous leukemia is an issue that has developed in parallel to the availability of rationally designed small molecule tyrosine kinase inhibitors to treat the disease. A significant fraction of patients with clinical resistance are recognized to harbor point mutations/substitutions in the Abl kinase domain, which limit or preclude drug binding and activity. Recent data suggest that compound mutations may develop as well. Proper identification of clinical resistance and prudent screening for all causes of resistance, ranging from adherence to therapy to Abl kinase mutations, is crucial to success with kinase inhibitor therapy. There is currently an array of Abl kinase inhibitors with unique toxicity and activity profiles available, allowing for individualizing therapy beginning with initial choice at diagnosis and as well informed choice of subsequent therapy in the face of toxicity or resistance, with or without Abl kinase domain mutations. Recent studies continue to highlight the merits of increasingly aggressive initial therapy to subvert resistance and importance of early response to identify need for change in therapy. Proper knowledge and navigation amongst novel therapy options and consideration of drug toxicities, individual patient characteristics, disease response, and vigilance for development of resistance are necessary elements of optimized care for the patient with chronic myelogenous leukemia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2860-2860
Author(s):  
Kousuke Nunoda ◽  
Tetsuzo Tauchi ◽  
Tomoiku Takaku ◽  
Masahiko Sumi ◽  
Seiichi Okabe ◽  
...  

Abstract Imatinib is an ABL-specific inhibitor that binds with high affinity to the inactive conformation of the BCR-ABL tyrosine kinase and has been shown to be effective in the treatment of chronic myelogenous leukemia. Dasatinib is an ATP-competitive, dual-spesific SRC and ABL kinase inhibitor that can bind BCR-ABL in both the active and inactive conformations. From a clinical stand point, dasatinib is particular attractive because it has been shown to induce hematologic and cytogenetic responses in imatinib-resistant CML patients. In the view of the fact that the combination of imatinib and dasatinib shows the additive/synergistic growth inhibition on a wild type p210 BCR-ABL expressing cells, we reasoned that these ABL kinase inhibitors might induce the different molecular pathways. To address this question, we used DNA microarrays to identify genes whose transcription was altered by imatinib and dasatinib. K562 cells were cultured with imatinib or dasatinib for 16 hrs, and gene expression data was obtained from three independent microarray hybridizations. Almost all of the imatinib- and dasatinib- responsive genes appeared to be similarly increased or decreased in K562 cells; however, small subsets of genes were identified as selectively altered expression by either imatinib or dasatinib. The genes whose expression was affected by imatinib and dasatinib were categorized into different functional groups based on their biological function, and genes in the cell proliferation and apoptosis categories were examined in detail. Imatinib and dasatinib affected the expression of several cyclin-dependent kinases (CDK2, CDK4, CDK6, CDK8, and CDK9), cell division cycle genes (CDC6, CDC7, CDC25C, and CDC34), and cyclones (cyclin A2, C, D2, D3, E1, E2, F, G1, G2, and H). Imatinib and dasatinib also modulated the expression of apoptosis-related genes including APAF1, BAK1, BCL2, BCL10, MCL1, CASP3, and CASP6). One of the distinct genes which are selectively modulated by dasatinib are CDK2 and CDK8, which had a maximal fold reduction of &lt;8-fold in microarray screen. Immunoblotting confirmed that gene expression changes induced only by dasatinib correlated with changes in protein expression. To assess the functional importance of dasatinib regulated genes, we used RNA interference to determine whether reduction of CDK2 and CDK8 affected the growth inhibition. The siRNA to CDK2 or CDK8 specifically reduced cdk2 or cdk8 in K562 cells. K562 cells pretreated with CDK2 or CDK8 siRNA showed the additive growth inhibition with imatinib but not with dasatinib. These finding demonstrate that the additive/synergistic growth inhibition by imatinib and dasatinib may be mediated by CDK2 and CDK8.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 793-793 ◽  
Author(s):  
Amie S. Corbin ◽  
Shadmehr Demehri ◽  
Ian J. Griswold ◽  
Chester A. Metcalf ◽  
William C. Shakespeare ◽  
...  

Abstract Oncogenic mutations of the KIT receptor tyrosine kinase have been identified in several malignancies including gastrointestinal stromal tumors (GIST), systemic mastocytosis (SM), seminomas/dysgerminomas and acute myelogenous leukemia (AML). Mutations in the regulatory juxtamembrane domain are common in GIST, while mutations in the activation loop of the kinase (most commonly D816V) occur predominantly in SM and at low frequency in AML. Several ATP-competitive kinase inhibitors, including imatinib, are effective against juxtamembrane KIT mutants, however, the D816V mutant is largely resistant to inhibition. We analyzed the sensitivities of cell lines expressing wild type KIT, juxtamembrane mutant KIT (V560G) and activation loop mutant KIT (D816V,F,Y and murine D814Y) to a potent Src/Abl kinase inhibitor, AP23464, and analogs. IC50 values for inhibition of cellular KIT phosphorylation by AP23464 were 5–11 nM for activation loop mutants, 70 nM for the juxtamembrane mutant and 85 nM for wild type KIT. Consistent with this, IC50 values in cell proliferation assays were 3–20 nM for activation loop mutants and 100 nM for wild type KIT and the juxtmembrane mutant. In activation loop mutant-expressing cell lines, AP23464, at concentrations ≤50 nM, induced apoptosis, arrested the cell cycle in G0/G1 and down-regulated phosphorylation of Akt and STAT3, signaling pathways critical for the transforming capacity of mutant KIT. In contrast, 500 nM AP23464 was required to induce equivalent effects in wild-type KIT and juxtamembrane mutant-expressing cell lines. These data demonstrate that activation loop KIT mutants are considerably more sensitive to inhibition by AP23464 than wild type or juxtamembrane mutant KIT. Non-specific toxicity in parental cells occurred only at concentrations above 2 μM. Additionally, at concentrations below 100 nM, AP23464 did not inhibit formation of granulocyte/macrophage and erythrocyte colonies from normal bone marrow, suggesting that therapeutic drug levels would not impact normal hematopoiesis. We also examined in vivo target inhibition in a mouse model. Mice were subcutaneously injected with D814Y-expressing (D816V homologous) murine mastocytoma cells. Once tumors were established, compound was administered three-times daily by oral gavage. One hour post treatment we observed >90% inhibition of KIT phosphorylation in tumor tissue. Following a three-day treatment regimen, there was a statistically significant difference in tumor size compared to controls. Thus, AP23464 analogs effectively target D816-mutant KIT both in vitro and in vivo and inhibit activation loop KIT mutants more potently than the wild type protein. These data provide evidence that this class of kinase inhibitors may have therapeutic potential for D816V-expressing malignancies such as SM or AML.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1376-1376
Author(s):  
Nikolas von Bubnoff ◽  
Silvia Thoene ◽  
Sivahari P. Gorantla ◽  
Jana Saenger ◽  
Christian Peschel ◽  
...  

Abstract BCR-ABL kinase domain mutations constitute the major mechanism of resistance in patients with chronic myelogenous leukemia treated with the ABL kinase inhibitor imatinib. Mutations causing resistance to therapeutic kinase inhibition were also identified in other target kinases in various malignant diseases, such as FLT3-ITD in acute myelogenous leukemia, cKit in gastrointestinal stromal tumors, EGFR in patients with lung cancer, and FIP1L1-PDGFRalpha in hypereosinophilic syndrome. Thus, mutations in kinase domains seem to be a general mechanism of resistance to therapeutically applicated tyrosine kinase inhibitors. We recently developed a cell-based screening strategy that allows one to predict the pattern and relative abundance of BCR-ABL resistance mutations emerging in the presence of imatinib, and the novel ABL kinase inhibitor AMN107 (nilotinib). We therefore intended to determine, if this method would also allow the generation of resistant cell clones with other oncogeneic tyrosine kinases as targets in the presence of specifically acting kinase inhibitors. When FLT3-ITD and su5614 were used as drug/target combination in our cell-based method, the frequency of resistant clones in the presence of su5614 at 10 times the IC50 was 0.17 per million cells. In 40 per cent of resistant clones, point mutations were detected leading to amino acid exchanges within the FLT3-ITD split kinase domain. The yield of resistant clones was increased by the factor of 14 to 2.37 per million cells by adding ethyl-nitrosourea (ENU), a potent inducer of point mutations. Also, the proportion of mutant clones increased from 40 to 74 per cent. In 83 mutant clones that were examined so far, we detected eight exchanges affecting kinase domain two (TK2) of the split kinase domain within or shortly behind the FLT3-ITD activation loop (A-loop). We did not detect exchanges affecting TK1. We next examined whether resistant clones would also come up with FIP1L1-PDGFRalpha-transformed cells in the presence of imatinib. Again, the yield of resistant clones increased when cells were pretreated with ENU, and a proportion of resistant clones contained mutations in the FIP1L1-PDGFRalpha kinase domain, affecting the nucleotide-binding loop (P-loop) and A-loop. We conclude that cell-based resistance screening is a simple and powerful tool that allows prediction of resistance mutations towards kinase inhibitors in various relevant oncogeneic kinases.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1353-1362 ◽  
Author(s):  
Giovanna Ferrari-Amorotti ◽  
Karen Keeshan ◽  
Michela Zattoni ◽  
Clara Guerzoni ◽  
Giorgio Iotti ◽  
...  

Abstract Chronic phase–to–blast crisis transition in chronic myelogenous leukemia (CML) is associated with differentiation arrest and down-regulation of C/EBPα, a transcription factor essential for granulocyte differentiation. Patients with CML in blast crisis (CML-BC) became rapidly resistant to therapy with the breakpoint cluster region–Abelson murine leukemia (BCR/ABL) kinase inhibitor imatinib (STI571) because of mutations in the kinase domain that interfere with drug binding. We show here that the restoration of C/EBPα activity in STI571-sensitive or -resistant 32D-BCR/ABL cells induced granulocyte differentiation, inhibited proliferation in vitro and in mice, and suppressed leukemogenesis. Moreover, activation of C/EBPα eradicated leukemia in 4 of 10 and in 6 of 7 mice injected with STI571-sensitive or -resistant 32D-BCR/ABL cells, respectively. Differentiation induction and proliferation inhibition were required for optimal suppression of leukemogenesis, as indicated by the effects of p42 C/EBPα, which were more potent than those of K298E C/EBPα, a mutant defective in DNA binding and transcription activation that failed to induce granulocyte differentiation. Activation of C/EBPα in blast cells from 4 patients with CML-BC, including one resistant to STI571 and BMS-354825 and carrying the T315I Abl kinase domain mutation, also induced granulocyte differentiation. Thus, these data indicate that C/EBPα has potent antileukemia effects even in cells resistant to ATP-binding competitive tyrosine kinase inhibitors, and they portend the development of anti-leukemia therapies that rely on C/EBPα activation.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3151-3162 ◽  
Author(s):  
Hanshi Sun ◽  
Vaibhav Kapuria ◽  
Luke F. Peterson ◽  
Dexing Fang ◽  
William G. Bornmann ◽  
...  

Abstract Although chronic myelogenous leukemia (CML) is effectively controlled by Bcr-Abl kinase inhibitors, resistance to inhibitors, progressive disease, and incomplete eradication of Bcr-Abl–expressing cells are concerns for the long-term control and suppression of this disease. We describe a novel approach to targeting key proteins in CML cells with a ubiquitin-cycle inhibitor, WP1130. Bcr-Abl is rapidly modified with K63-linked ubiquitin polymers in WP1130-treated CML cells, resulting in its accumulation in aggresomes, where is it unable to conduct signal transduction. Induction of apoptosis because of aggresomal compartmentalization of Bcr-Abl was observed in both imatinib-sensitive and -resistant cells. WP1130, but not Bcr-Abl kinase inhibitors, directly inhibits Usp9x deubiquitinase activity, resulting in the down-regulation of the prosurvival protein Mcl-1 and facilitating apoptosis. These results demonstrate that ubiquitin-cycle inhibition represents a novel and effective approach to blocking Bcr-Abl kinase signaling and reducing Mcl-1 levels to engage CML cell apoptosis. This approach may be a therapeutic option for kinase inhibitor–resistant CML patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3958-3961 ◽  
Author(s):  
Jörg Cammenga ◽  
Stefan Horn ◽  
Ulla Bergholz ◽  
Gunhild Sommer ◽  
Peter Besmer ◽  
...  

Multiple genetic alterations are required to induce acute myelogenous leukemia (AML). Mutations in the extracellular domain of the KIT receptor are almost exclusively found in patients with AML carrying translocations or inversions affecting members of the core binding factor (CBF) gene family and correlate with a high risk of relapse. We demonstrate that these complex insertion and deletion mutations lead to constitutive activation of the KIT receptor, which induces factor-independent growth of interleukin-3 (IL-3)–dependent cells. Mutation of the evolutionary conserved amino acid D419 within the extracellular domain was sufficient to constitutively activate the KIT receptor, although high expression levels were required. Dose-dependent growth inhibition and apoptosis were observed using either the protein tyrosine kinase inhibitor imatinib mesylate (STI571, Gleevec) or by blocking the phosphoinositide-3-kinase (PI3K)–AKT pathway. Our data show that the addition of kinase inhibitors to conventional chemotherapy might be a new therapeutic option for CBF-AML expressing mutant KIT.


Sign in / Sign up

Export Citation Format

Share Document