In Vitro and In Vivo Activity of the Src/Abl Kinase Inhibitor AP23464 and Analogs Against Activation Loop Mutants of KIT.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 793-793 ◽  
Author(s):  
Amie S. Corbin ◽  
Shadmehr Demehri ◽  
Ian J. Griswold ◽  
Chester A. Metcalf ◽  
William C. Shakespeare ◽  
...  

Abstract Oncogenic mutations of the KIT receptor tyrosine kinase have been identified in several malignancies including gastrointestinal stromal tumors (GIST), systemic mastocytosis (SM), seminomas/dysgerminomas and acute myelogenous leukemia (AML). Mutations in the regulatory juxtamembrane domain are common in GIST, while mutations in the activation loop of the kinase (most commonly D816V) occur predominantly in SM and at low frequency in AML. Several ATP-competitive kinase inhibitors, including imatinib, are effective against juxtamembrane KIT mutants, however, the D816V mutant is largely resistant to inhibition. We analyzed the sensitivities of cell lines expressing wild type KIT, juxtamembrane mutant KIT (V560G) and activation loop mutant KIT (D816V,F,Y and murine D814Y) to a potent Src/Abl kinase inhibitor, AP23464, and analogs. IC50 values for inhibition of cellular KIT phosphorylation by AP23464 were 5–11 nM for activation loop mutants, 70 nM for the juxtamembrane mutant and 85 nM for wild type KIT. Consistent with this, IC50 values in cell proliferation assays were 3–20 nM for activation loop mutants and 100 nM for wild type KIT and the juxtmembrane mutant. In activation loop mutant-expressing cell lines, AP23464, at concentrations ≤50 nM, induced apoptosis, arrested the cell cycle in G0/G1 and down-regulated phosphorylation of Akt and STAT3, signaling pathways critical for the transforming capacity of mutant KIT. In contrast, 500 nM AP23464 was required to induce equivalent effects in wild-type KIT and juxtamembrane mutant-expressing cell lines. These data demonstrate that activation loop KIT mutants are considerably more sensitive to inhibition by AP23464 than wild type or juxtamembrane mutant KIT. Non-specific toxicity in parental cells occurred only at concentrations above 2 μM. Additionally, at concentrations below 100 nM, AP23464 did not inhibit formation of granulocyte/macrophage and erythrocyte colonies from normal bone marrow, suggesting that therapeutic drug levels would not impact normal hematopoiesis. We also examined in vivo target inhibition in a mouse model. Mice were subcutaneously injected with D814Y-expressing (D816V homologous) murine mastocytoma cells. Once tumors were established, compound was administered three-times daily by oral gavage. One hour post treatment we observed >90% inhibition of KIT phosphorylation in tumor tissue. Following a three-day treatment regimen, there was a statistically significant difference in tumor size compared to controls. Thus, AP23464 analogs effectively target D816-mutant KIT both in vitro and in vivo and inhibit activation loop KIT mutants more potently than the wild type protein. These data provide evidence that this class of kinase inhibitors may have therapeutic potential for D816V-expressing malignancies such as SM or AML.

Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Amie S. Corbin ◽  
Shadmehr Demehri ◽  
Ian J. Griswold ◽  
Yihan Wang ◽  
Chester A. Metcalf ◽  
...  

Oncogenic mutations of the Kit receptor tyrosine kinase occur in several types of malignancy. Juxtamembrane domain mutations are common in gastrointestinal stromal tumors, whereas mutations in the kinase activation loop, most commonly D816V, are seen in systemic mastocytosis and acute myelogenous leukemia. Kit activation-loop mutants are insensitive to imatinib mesylate and have been largely resistant to targeted inhibition. We determined the sensitivities of both Kit mutant classes to the adenosine triphosphate (ATP)–based inhibitors AP23464 and AP23848. In cell lines expressing activation-loop mutants, low-nM concentrations of AP23464 inhibited phosphorylation of Kit and its downstream targets Akt and signal transducer and activator of transcription 3 (STAT3). This was associated with cell-cycle arrest and apoptosis. Wild-type Kit–and juxtamembrane-mutant–expressing cell lines required considerably higher concentrations for equivalent inhibition, suggesting a therapeutic window in which cells harboring D816V Kit could be eliminated without interfering with normal cellular function. Additionally, AP23464 did not disrupt normal hematopoietic progenitor-cell growth at concentrations that inhibited activation-loop mutants of Kit. In a murine model, AP23848 inhibited activation-loop mutant Kit phosphorylation and tumor growth. Thus, AP23464 and AP23848 potently and selectively target activation-loop mutants of Kit in vitro and in vivo and could have therapeutic potential against D816V-expressing malignancies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


2021 ◽  
Author(s):  
Evelyn M. Mrozek ◽  
Vineeta Bajaj ◽  
Yanan Guo ◽  
Izabela Malinowska ◽  
Jianming Zhang ◽  
...  

Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored.  Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3601-3601 ◽  
Author(s):  
Karthika Natarajan ◽  
Trevor J Mathias ◽  
Kshama A Doshi ◽  
Adriana E Tron ◽  
Manfred Kraus ◽  
...  

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) are present in acute myeloid leukemia (AML) cells in 30% of cases and are associated with high relapse rate and short disease-free survival. FLT3 inhibitors have clinical activity, but their activity is limited and transient. New therapeutic approaches combining FLT3 inhibitors and inhibitors of downstream or parallel signaling pathways may increase depth and duration of responses. The Pim-1 serine/threonine kinase is transcriptionally upregulated by FLT3-ITD. We previously demonstrated that Pim-1 phosphorylates and stabilizes FLT3 and thereby promotes its signaling in a positive feedback loop. Pim kinase inhibitors are in clinical trials. Here we studied the effect of combinations of the Pim kinase inhibitor AZD1208 and clinically active FLT3 inhibitors on AML with FLT3-ITD in vitro and in vivo. Ba/F3-ITD cells, with FLT3-ITD, were grown in medium with the Pim kinase inhibitor AZD1208 at 1 μM and/or the FLT3 inhibitors quizartinib (Q), sorafenib (S) or crenolanib (C) at their IC50values of 1, 2.5 and 20 nM, respectively, and viable cells were measured at serial time points. While Q, S, C or AZD1208 treatments reduced cell numbers, compared to DMSO control, combined AZD1208 and Q, S or C treatments abrogated proliferation. Because FLT3-ITD cells remain responsive to FLT3 ligand (FLT3L) despite constitutive FLT3 activation and increased FLT3L levels following chemotherapy have been hypothesized to contribute to relapse, we repeated the proliferation experiments in the presence of 0, 1, 3 and 10 ng/ml FLT3L. FLT3L produced a concentration-dependent increase in proliferation and, while Q, S, C or AZD1208 treatments individually reduced cell numbers, combined AZD1208 and Q, S or C abrogated proliferation at all FLT3L concentrations tested, suggesting that these combinations overcome growth stimulation by FLT3L. To understand the anti-proliferative effect of combined Pim-1 and FLT3 inhibitors, we first studied cell cycle effects of AZD1208 and Q, S or C in Ba/F3-ITD cells and of AZD1208 and Q in the additional FLT3-ITD cell lines 32D-ITD, MV4-11 and MOLM14. We found a progressive increase in sub-G1 phase cells at 24, 48 and 72 hours, consistent with induction of apoptosis. Synergistic induction of apoptosis was confirmed by Annexin V/propidium iodide labeling of Ba/F3-ITD and 32D-ITD cells treated for 48 hours with AZD1208 combined with Q (p<0.0001), S (p<0.0001) or C (p<0.001), and of MV4-11 (p<0.0001) and MOLM14 (p<0.05) cells treated with AZD1208 combined with Q, in relation to each drug alone. Apoptosis was additionally confirmed by loss of mitochondrial membrane potential. Synergistic induction of apoptosis was not seen in Ba/F3-WT or 32D-WT cells, with wild-type FLT3, indicating a FLT3-ITD-specific effect. Synergistic (p<0.01) induction of apoptosis was seen in three FLT3-ITD AML patient samples treated in vitro with AZD1208 combined with Q. In an in vivo model, synergistic decrease in tumor volume was seen with combined AZD1208 and Q therapy in mice with subcutaneously implanted MV4-11 cells, with FLT3-ITD, but not with KG1a cells, with wild-type FLT3. Mechanistically, combined AZD1208 and Q treatment in vitro did not increase reactive oxygen species, compared to each drug alone, but increased both cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) levels, and caspase 3 cleavage was reduced by co-incubation with the pan-caspase inhibitor Z-VAD. Moreover, combined AZD1208 and Q treatment caused a synergistic decrease in expression of the anti-apoptotic Mcl-1 and of Bcl-xL proteins, but did not significantly alter Bim-1, p-Bad, Bad, Bax, Bak or Bcl-2, pro- and anti-apoptotic protein levels. Bcl-xL mRNA expression decreased along with protein levels, but Mcl-1 mRNA levels remain unchanged, indicating post-transcriptional down-regulation of Mcl-1 by the combination treatment. In summary, synergistic cytotoxicity of AZD1208 and clinically active FLT3 inhibitors was demonstrated in FLT3-ITD cell lines and patient samples in vitro and in cell lines in vivo, via caspase-mediated apoptosis, associated with a synergistic decrease in Mcl-1 and Bcl-xL expression. Our data suggest clinical promise for combination therapy with Pim kinase and FLT3 inhibitors in patients with AML with FLT3-ITD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 474-474 ◽  
Author(s):  
Neil P. Shah ◽  
Corynn Kasap ◽  
Ronald Paquette ◽  
Jorge Cortes ◽  
Javier Pinilla ◽  
...  

Abstract The fusion protein BCR-ABL is a hallmark of chronic myelogenous leukemia (CML) and Philadelphia-positive acute lymphocytic leukemia (Ph+-ALL), and has been demonstrated as the primary driver of these diseases. Control of CML for considerable periods of time has been achieved through use of selective ABL kinase inhibitors, particularly imatinib. Once patients fail imatinib therapy, they are commonly found to harbor a mutated and activated form of BCR-ABL which is unable to bind the inhibitor. A more recent ABL inhibitor, dasatinib, can block growth of cells harboring most of the imatinib-resistant mutations, but T315I and F317L mutations are often seen in patients relapsing after dasatinib therapy. Thus once a patient develops CML harboring these mutations, there are few therapeutic options available. XL228 is a potent multi-targeted protein kinase inhibitor with activity against IGF1R, src, and Abl. It displays low nanomolar biochemical activity against wild type Abl kinase (Ki = 5 nM), as well as the T315I form of Abl resistant to imatinib and dasatinib (Ki = 1.4 nM). XL228 also inhibits Aurora A with an IC50 of approximately 3 nM, demonstrating a more balanced inhibition profile compared to other dual Abl /Aurora inhibitors. CML and ALL cell lines were evaluated for sensitivity to XL228, and in each case the IC50 for inhibition of proliferation was less than 100 nM. XL228 inhibits phosphorylation of BCR-ABL and its substrate STAT5 in K562 cells in vitro with IC50s of 33 and 43 nM, respectively. Single-dose pharmacodynamics studies demonstrate a potent effect of XL228 on BCR-ABL signaling in K562 xenograft tumors. Phosphorylation of BCR-ABL was decreased by 50% at XL228 plasma concentrations of 3.5 μM; a similar decrease in phospho-STAT5 occurred at 0.8 μM plasma concentration. XL228 showed clear superiority to MK-0457, imatinib, and dasatinib in downregulating BCR-ABL phosphorylation in BaF3 cells expressing the T315I form of BCR-ABL in vitro (406 nM, 6912 nM, >10,000 nM, >10,000 nM, respectively), and in xenograft experiments in vivo. These results indicate that XL228 potently inhibits wild type and T315I forms of BCR-ABL, and provide a rationale for the clinical development of this agent for the treatment of patients with drug-resistant disease. A phase I dose escalation study of XL228 in subjects with CML or Ph+-ALL who have failed prior imatinib and dasatinib therapy has been initiated, focusing on safety/tolerability, pharmacodynamics, and pharmacokinetics. Pharmacodynamic assessments include a flow cytometry-based phospho-CrkL assay, quantitative PCR for BCR-ABL, and plasma markers of XL228 activity. An update on our clinical experience with XL228 in subjects resistant or intolerant to imatinib and dasatinib will be presented.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248380
Author(s):  
Evelyn M. Mrozek ◽  
Vineeta Bajaj ◽  
Yanan Guo ◽  
Izabela A. Malinowska ◽  
Jianming Zhang ◽  
...  

Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored. Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1377-1377
Author(s):  
Mark R. Bray ◽  
Graham C. Fletcher ◽  
Trisha A. Denny ◽  
John Xu ◽  
Xiaoru Chen ◽  
...  

Abstract The clinical success of Gleevec (imatinib) for chronic myelogenous leukemia has demonstrated that small-molecule inhibitors of specific kinases can be developed into effective oncology therapies. However, the rapid development of resistance in leukemic cells to drugs such as Gleevec and the limited therapeutic indications addressed with these molecules suggests that considerable opportunity exists for new inhibitors with a distinctive spectrum of activities against multiple kinase targets. ENMD-981693 is a novel, orally-active molecule that was discovered through a screening effort directed towards Aurora kinases, a family of serine/threonine kinases that are essential for mitotic progression. ENMD-981693 is selective for the Aurora A isoform, with an IC50 value of 25 nM, compared to an IC50 value of ~700 nM for Aurora B. The activity of ENMD-981693 was evaluated against a panel of 100 recombinant kinases, and the compound was shown to inhibit a broad range of tyrosine kinase targets including Flt3, CSF1R, Lck, JAK2, and c-Kit. ENMD-981693 inhibited the in vitro growth of human hematopoietic cancer lines including MV4;11, K562, THP-1, Jurkat, TF-1, U937, and HL-60 with IC50 values ranging from 0.04 – 21 μM. ENMD-981693 was shown to induce G2/M cell cycle arrest followed by apoptosis in U937 cells, without induction of the endo-reduplication phenotype (≥4N DNA content) associated with Aurora B-acting inhibitors such as MK-0457 (VX-680) and AZD1152. Primary cells derived from AML patients were sensitive to treatment with ENMD-981693 in vitro, resulting in IC50 values from 0.2 – 6.0 μM. Sensitivity of primary CML samples was more variable in in vitro cytotoxicity assays, with IC50s in the range of 0.1 – 40 μM. ENMD-981693 shows significant antitumor activity and is well tolerated in xenograft studies, with no weight loss or morbidity observed in administration schedules of up to 100 mg/kg bid or 200 mg/kg qd, given continuously for more than 30 days. Results from in vivo efficacy studies with ENMD-981693 using the MV4;11 xenograft model will be described. In conclusion, ENMD-981693 is a novel kinase inhibitor with potent activity towards a number of targets important in hematologic cancers.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13108-13108 ◽  
Author(s):  
O. Gautschi ◽  
P. Purnell ◽  
C. P. Evans ◽  
J. C. Yang ◽  
W. S. Holland ◽  
...  

13108 Background: AZD0530 is a highly selective, orally available, dual specific Src/Abl kinase inhibitor in clinical development. We tested this agent in multiple lung cancer cell lines in vitro. We hypothesized that activity of AZD0530 may depend on the level of activated (pY416-)Src, and that Src inhibition may decrease Bcl-xL protein levels and lower the barrier to apoptosis. Methods: NSCLC (A549, Calu-1, Calu-6) and SCLC (H69, H526) cells were incubated with 0.001–100 μM AZD0530 for 1–72hrs. Proliferation (MTT), DNA-content (flow cytometry), and protein levels of Src, pY416-Src, PARP, and Bcl-xL (Western blotting) were assessed. Results: Basal pY416-Src was detectable in most cell lines except H526. AZD0530 decreased pY416-Src levels at submicromolar concentrations in pY416-Src positive cells. In A549, Calu-1 and Calu-6, AZD0530 blocked cell growth in a time- and dose-dependent way (IC50 = 7–25 μM) by arrest in G1, retaining a cytostatic effect at submicromolar concentrations in A549 and Calu-1. AZD0530 induced apoptosis in 10–22% of these cells at micromolar concentrations, accompanied by a decrease of Bcl-xL protein in A549 and Calu-1. In H69 and H526, growth inhibition by AZD0530 was limited (IC50 >100 μM). Conclusions: 1) AZD0530 induced apoptosis at micromolar concentrations, and inhibited cell growth at micromolar to submicromolar concentrations in some cell lines. 2) pY416-Src is a potential marker for drug responsiveness, but other factors should also be tested. 3) Decrease of Bcl-xL by AZD0530 may render cancer cells more sensitive to chemotherapy. These data suggest that Src kinase inhibitors merit further testing in lung cancer, both alone and in combination with other agents. (Support: Swiss National Science Foundation, Swiss Cancer League, AstraZeneca). [Table: see text]


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1522-1522
Author(s):  
Shinya Kimura ◽  
Haruna Naito ◽  
Asumi Yokota ◽  
Yuri Kamitsuji ◽  
Eri Kawata ◽  
...  

Abstract Chemical modifications of imatinib mesylate made with the guidance of molecular modeling yielded several promising compounds. Among them, we selected a compound denoted NS-187 (elsewhere described as CNS-9) on the basis of its affinity to Abl, and also to Lyn, which may be involved in imatinib-resistance (Figure). The most striking structural characteristic of NS-187 is its trifluoromethyl (CF3) group at position 3 of the benzamide ring. The presence of the CF3 group strengthened the hydrophobic interactionss of the molecule with the hydrophobic pocket of Abl. Another possible merit of the CF3 group is that it may fix the conformation of the drug by hindering its rotation at the 4-position of the benzamide ring; as a result, a CF3-bearing molecule may be more potent than more flexible compounds such as imatinib. In fact, NS-187 was 25–55 times more potent than imatinib in vitro and and at least 10 times more potent than in vivo. NS-187 also inhibited the phosphorylation and growth of all Bcr-Abl mutants tested except T315I at physiological concentrations. Another special feature of NS-187, in addition to its increased affinity to Abl is its unique spectrum of inhibitory activity against protein kinases. At a concentration of 0.1 μM, NS-187 inhibited only four of 79 tyrosine kinases, that is, Abl, Arg, Fyn, and Lyn. Notably, at 0.1 μM NS-187 did not inhibit PDGFR, Blk, Src or Yes. The IC50 values of NS-187 for Abl, Src and Lyn were 5.8 nM, 1700 nM and 19 nM, respectively, and those of imatinib were 106 nM, &gt;10,000 nM and 352 nM, respectively. These findings indicate that NS-187 acts as a Bcr-Abl/Lyn inhibitor. In this respect, NS-187 may stand out among other novel Abl tyrosine kinase inhibitors, because BMS-354825 inhibits all members of the Src family, while AMN-107 inhibits none of the Src-family kinases. Our proposed docking models of the NS-187/Abl complex support the notion that NS-187 is more specific for Lyn than for Src. The amino acid at position 252 is either Gln or Cys in Src-family proteins. NS-187 inhibited the Gln252-bearing proteins Abl, Fyn and Lyn but had lower activity against the Cys252-bearing Src and Yes. This is probably because Gln, unlike Cys, readily forms hydrogen bonds. The distinguishing characteristic of NS-187, its high affinity for and specific inhibition of Abl and Lyn, may be useful in the treatment of Bcr-Abl-positive leukemia patients. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document