Human Erythroblasts Generated in Vitro Remain Functional with a Normal Karyotype 8 Years after Cryopreservation: Implications for Ex Vivo Generated Erythroid Transfusion Products.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2303-2303 ◽  
Author(s):  
Massimo Sanchez ◽  
Amanda Leblanc ◽  
Annalisa Mancini ◽  
Francesca Masiello ◽  
Valentina Tirelli ◽  
...  

Abstract The safety and adequacy of the blood supply is threatened by natural disasters, social and political events, epidemics, and emerging infections. During shortages, frozen blood is used to supplement the blood supply. Current regulations allow red blood cells to be stored frozen up to ten years; however, the shelf-life of such products is limited once blood is thawed. Cultured human erythroid cells derived in vitro from either fresh or cryopreserved CD34+ cells or peripheral blood mononuclear cells potentially represent an alternative source of erythrocytes for transfusion. However, it is unknown if normal erythroid cells undergoing ex-vivo expansion with growth factors will remain functional or develop genetic rearrangements in culture making them unsuitable for transfusion. We have compared the proliferative and differentiation potential of human erythroblasts obtained in culture from the peripheral blood mononuclear cells (PBMC) of adult donors. This analysis included freshly expanded erythroblasts as well as erythroblasts cryopreserved and stored for short (1 month) and long (8 years) periods. PBMC from four volunteer blood donors were prepared using gradient-density centrifugation and cryopreserved in DMSO in June 2000. One months later, 2x107 PBMC from one of the donors were thawed and cultured under conditions that allow massive ex vivo generation of erythroblasts (HEMA culture, Migliaccio et al Blood Cells Mol Dis2002;28:169-80). These cultures were stimulated with recombinant hSCF (50ng/mL), hGM-CSF (1ng/ml), hIL3 (1U/mL), hEPO (1U/mL) and contained dexamethasone and estradiol (each 10−6 M). Twenty million PBMC from the three additional donors were thawed and cultured under HEMA conditions in 2008. In all the three cases, the day 9 cultures contained an average of 10x107 cells, 95% of which were erythroid by CD36 and CD235a staining. These day 9 cells were either cultured for 4 additional days or cryopreserved (>10 individual vials per donor containing 5x106 each). Cells were subcultured and maintained either under HEMA conditions (to assess their proliferation ability) or stimulated with EPO alone (5U/ mL) (to assess maturation). In May 2008, aliquots of the erythroblasts obtained from all donors were thawed and cultured again and amplification and differentiation potential of the freshly expanded and thawed cells were compared. Cells thawed after few months or 8 years of cryopreservation gave similar results and the data were pooled. The viability of the erythroblasts after thawing was 60–70%. After 4 days under HEMA conditions, both freshly expanded and cryopreserved erythroblasts doubled in numbers and retained an immature erythroid phenotype (CD36highCD235alow). On the other hand, in cultures containing EPO alone, the erythroblasts remained constant in number but progressed to a mature CD36posCD235ahigh phenotype. The results are summarized in the following table: Proliferation and Maturation Profile of Fresh and Cryopreserved Human Erythroblasts Fold Increase Phenotype CD36highCD235alow CD36highCD235ahigh Fresh cells HEMA culture 2 53% 40% EPO alone 1 15% 80% Thawed Cells HEMA culture 2 46% 36% EPO alone 1 5% 90% The eight-years cryopreserved erythroblasts expanded in culture were also cytogenetically evaluated. Karyotype and multicolor FISH analyses demonstrated a normal 46,XY karyotype with no obvious genomic rearrangements. To determine whether cells carried any known in utero leukemic genomic rearrangements, interphase FISH studies were performed for TEL/ETV6-AML1, MLL, 5q31 (EGR1) and 7q31 loci. In 800 evaluated interphase nuclei, all loci were present in disomy. This data indicates that human erythroblasts obtained in culture can be efficiently cryopreserved, remain functional in culture and do not acquire chromosomal abnormalities detectable by multicolor FISH analysis. These observations suggest that cultured erythroblasts should be further evaluated to determine if they represent a more suitable long term storage product than cryopreserved mature red blood cells.

1992 ◽  
Vol 14 (7) ◽  
pp. 1279-1284
Author(s):  
Wilma Barcellini ◽  
Maria Orietta Borghi ◽  
Cristina Fain ◽  
Nicoletta Del Papa ◽  
Patrizia Favini ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1037
Author(s):  
Patricia Ruiz-Limon ◽  
Maria L. Ladehesa-Pineda ◽  
Clementina Lopez-Medina ◽  
Chary Lopez-Pedrera ◽  
Maria C. Abalos-Aguilera ◽  
...  

Endothelial dysfunction (ED) is well known as a process that can lead to atherosclerosis and is frequently presented in radiographic axial spondyloarthritis (r-axSpA) patients. Here, we investigated cellular and molecular mechanisms underlying r-axSpA-related ED, and analyzed the potential effect of peripheral blood mononuclear cells (PBMCs) in promoting endothelial injury in r-axSpA. A total of 30 r-axSpA patients and 32 healthy donors (HDs) were evaluated. The endothelial function, inflammatory and atherogenic profile, and oxidative stress were quantified. In vitro studies were designed to evaluate the effect of PBMCs from r-axSpA patients on aberrant endothelial activation. Compared to HDs, our study found that, associated with ED and the plasma proatherogenic profile present in r-axSpA, PBMCs from these patients displayed a pro-oxidative, proinflammatory, and proatherogenic phenotype, with most molecular changes noticed in lymphocytes. Correlation studies revealed the relationship between this phenotype and the microvascular function. Additional in vitro studies confirmed that PBMCs from r-axSpA patients promoted endothelial injury. Altogether, this study suggests the relevance of r-axSpA itself as a strong and independent cardiovascular risk factor, contributing to a dysfunctional endothelium and atherogenic status by aberrant activation of PBMCs. Lymphocytes could be the main contributors in the development of ED and subsequent atherosclerosis in this pathology.


2021 ◽  
Vol 134 ◽  
pp. 58-63
Author(s):  
Matheus Fujimura Soares ◽  
Larissa Martins Melo ◽  
Jaqueline Poleto Bragato ◽  
Amanda de Oliveira Furlan ◽  
Natália Francisco Scaramele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document