The Dual Bromodomain Protein Brd2 Controls Primary B Cell Mitogenesis and Cell Cycle in Mice Reconstituted with Lentivirus-Transduced HSCs

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2465-2465
Author(s):  
Wanda P. Blanton ◽  
Fangnian Wang ◽  
Hongsheng Liu ◽  
Paul Romesser ◽  
Douglas Faller ◽  
...  

Abstract Transcriptional control of cellular proliferation and differentiation is critically important in hematopoiesis; specifically, the role of chromatin-dependent regulatory processes in this context is poorly understood. The human BRD2 proto-oncogene encodes a double bromodomain protein that binds to acetylated histone H4 in chromatin and is located within the MHC class II locus, suggesting Brd2 plays a role in immunity. However, BRD2 shares no sequence similarity with other MHC genes, nor is Brd2 involved in antigen processing, but rather it plays a role in mitogenic signal transduction. We have previously found that whole-body knockout of Brd2 is lethal to mice. However, when Brd2 was expressed constitutively in the B cells of transgenic mice, Brd2 binds E2F proteins, histone acetylases and Swi/Snf complexes, and co-activates cyclin A leading to B cell lymphoma and leukemia. Importantly, elevated levels of Brd2 have been reported in primary malignant B cells from human and mouse. We therefore hypothesize that Brd2 multiprotein complexes, working through chromatin modification, are crucial in the control of the cell cycle and in the mitogen responsiveness and proliferation of the B cell compartment. To study the effects of Brd2 in B cell development and proliferation, we performed bone marrow transplants of hematopoietic stem cells in a chimeric mouse model. Hematopoietic stem cells were sorted from CD45.1 donor mice with the characteristic ‘side population’ profile by flow cytometry and transduced with lentivirus containing vectors for Brd2 overexpression, shRNA knockdown, or control vectors. Recipient CD45.2 mice were lethally irradiated and a functional immune system was successfully reconstituted with donor cells and CD45.2 competitor BM cells. Mice were immunophenotyped and functional B cell mitogenic capacity was examined by BrdU incorporation into LPS-stimulated B cells. We found that in the spleen, Brd2 expression dramatically expands the CD45.1 (but not CD45.2) B cell compartment at the expense of T cells and renders B cells mitogenically hypersensitive. Compared with control, there was an increase in BrdU incorporation at 24 and 48 hours (29.8% v. 43.5% at T=24 h; 56.9% v. 66.7% at T=48 h). Preliminary results also suggest that B cell development was skewed in the bone marrow and periphery towards B1a phenotype. Moreover, downregulation of Brd2 via shRNA blocked cyclin A transcription and completely arrested B cell development and proliferation. Taken together, these data suggest that Brd2, through epigenetic regulation of the cell cycle, plays an important role in B-lymphopoiesis, proliferation, and stimulation.

1994 ◽  
Vol 14 (1) ◽  
pp. 382-390 ◽  
Author(s):  
S Okada ◽  
Z Q Wang ◽  
A E Grigoriadis ◽  
E F Wagner ◽  
T von Rüden

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 79-79
Author(s):  
Zev J. Greenberg ◽  
Darlene A. Monlish ◽  
Rachel L. Bartnett ◽  
Jeffrey J. Bednarski ◽  
Laura G. Schuettpelz

The tetraspanin CD53 has been implicated in B cell development and function. Tetraspanins are a family of transmembrane proteins important for organization of the plasma membrane and regulation of cellular migration, adhesion, and activation. CD53 has been shown to be a transcriptional target of EBF1, a critical transcription factor for early B cell development. Additional signaling for early B cell development occurs through the IL-7 receptor (IL-7R), where ligation promotes continued B cell differentiation and pro-survival/anti-apoptotic gene expression. Human deficiency of CD53 results in recurrent infections and reduced serum immunoglobulins. While prior studies have implicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. Herein, we show that CD53 expression rapidly increases throughout B cell development, beginning at the pre-pro-B cell stage. With a CRISPR-generated knockout mouse, we show that Cd53-/- mice have significantly reduced bone marrow (25% fewer, p<0.005), splenic (35% fewer, p<0.05), lymphatic (65% fewer, p<0.0001), and peripheral (30% fewer, p<0.005) B cells compared to wild-type (WT) littermate controls. Mirroring the human phenotype, Cd53-/- mice have significantly reduced serum IgG and IgM (40% reduced, p<0.01). In addition, hematopoietic stem cells isolated from Cd53-/- mice give rise to 30% fewer B cells compared to controls in vitro (p=0.005). Analysis of bone marrow B cell development demonstrates that this loss of B cells originates with early B cell progenitors, which express nearly 50% less IL-7Ra than WT and reduced IL-7 signaling. Using mass cytometry, we identified differential signaling pathways downstream of IL-7R in B cell progenitors. Specifically, we observe impaired PI3K and STAT5 activation in pre-pro- and pro-B cells in the absence of CD53, with a consequent increase in apoptosis in these populations (p<0.01). Decreased STAT5 phosphorylation was confirmed by western blot. Finally, co-immunoprecipitation studies demonstrate a physical interaction between CD53 and IL-7Ra, suggesting that these proteins associate at the cell surface. Together, these data suggest a novel role for CD53 during IL-7 signaling to promote early B cell development. Ongoing studies are focused on determining the CD53 residues required for interaction with IL-7R. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2524-2524
Author(s):  
Baohua Sun ◽  
Saradhi Mallampati ◽  
Yun Gong ◽  
Donghai Wang ◽  
M. James You ◽  
...  

Abstract Abstract 2524 Poster Board II-501 B cells constitute an integral part of the immune system. The development of mature B cells from hematopoietic stem cells is a complex process that is regulated in a hierarchical order by various proteins, particularly transcription factors. Sox4 is a SRY-related HMG box containing transcription factor and is known to be involved in B cell development. However, the role of Sox4 in various stages of B cell development has not been systematically investigated. In this study we used a conditional knockout mouse strain and studied the effect of Sox4 deletion in B lymphopoiesis in adult mice. We crossed the Sox4-floxed mice with different Cre mouse strains that were expected to delete the floxed Sox4 gene at different B cell developmental stages. These Cre strains included Vav-iCre (expressed in hematopoietic stem cell stage, starting from early embryos), MX1-Cre (expression in hematopoietic stem cells, induced by pIpC injection in adults), MB1-Cre (expressed in B cells, starting from early progenitor cells in embryos), and CD21-Cre (expressed in mature B cells). We demonstrated that deletion of Sox4 caused an arrest of B lymphopoiesis at the transition from pre-pro-B cell (fraction A) stage to pro-B cell stage (fraction B): fraction A cells are slightly reduced in number whereas fraction B and later stage cells are nearly absent. The pre-pro-B cells from the Sox4 knockout mice retain a population of AA4.1+ cells, which are considered to be developed into B cells. Deletion of Sox4 in early embryonic stage (Vav-iCre) or in adults (Mx1-Cre) results in a similar phenotype on B lymphopoiesis, except that peritoneal B1 cells appear to be affected with Vav-iCre, but not with Mx1-Cre. MB1-Cre gave rise to similar results as did Vav-iCre, but the arrest was not as dramatic as with Vav-iCre. CD21-Cre produced no significant difference in B cell phenotype. These data suggested that Sox4 is required for early B cell development at the transition from pre-pro-B cells to pro-B cells and is not required for mature B cells. We are currently investigating the transcription program of this transcription factor in B cell development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 282-282
Author(s):  
Shuangmin Zhang ◽  
Yi Zheng ◽  
Richard Lang ◽  
Fukun Guo

Abstract Abstract 282 RhoA GTPase is an intracellular signal transducer capable of regulating a wide range of cell functions including cytoskeleton dynamics, proliferation, and survival. In lymphocytes, studies by using dominant negative mutant or C3 transferase expressing transgenic mice suggest that RhoA is involved in TCR and BCR signaling and related T cell functions such as polarization, migration, survival, and proliferation. To date, the physiological role of RhoA in lymphocyte development remains unclear. In this study, we have achieved T cell, B cell, and hematopoietic stem cell-specific deletion of RhoA by conditional gene targeting with CD2, CD19 and Mx1 promoter-driven Cre expression, respectively, in the RhoAloxP/loxP mice. First, we found that RhoA gene disruption in early T cells caused a drastic decrease in thymocyte cellularity, with the numbers of CD4−CD8− double negative (DN), CD4+CD8+ double positive (DP), CD4+CD8− single positive (SP), and CD4−CD8+ SP T cells decreased by 88.8% ± 6.0%, 99.4% ± 1.0%, 99.3% ± 1.2%, and 98.6% ± 2.0%, respectively. Among DN subpopulations, CD44+CD25− (DN1), CD44+CD25+ (DN2), CD44−CD25+ (DN3), and CD44−CD25− (DN4) cells were reduced by 91.7% ± 6.0%, 54.9% ± 27.7%, 50.9% ± 33.3%, and 96.7% ± 3.4%, respectively. Further, RhoA knockout led to a significant loss of DP thymocytes at the initial stage (CD69highTCRint) of positive selection, suggesting that RhoA is required for positive selection. The decreased thymocyte cellularity in mutant mice is associated with increased apoptosis of all thymic T lineages. RhoA deficiency also resulted in a perturbation in thymocyte cell cycle progression as manifested by increased BrdU incorporation in DN1 and DN2 cells and decreased BrdU incorporation in DN4 and DP cells. Concomitantly, RhoA-deficient thymocytes showed a 59.8% ± 26.3% reduction in proliferative potential in response to TCR crosslinking. Western blot analysis revealed that the activities of ZAP70, LAT, Akt, Erk, and p38 were impaired in RhoA-/- thymocytes. In periphery, spleens of the RhoA null mice contained 7.4% ± 8.0% of CD4+ T cells and 3.7% ± 2.7% of CD8+ T cells compared with that of wild type (WT) mice. Loss of peripheral mature T cells in mutant mice is reflected by a marked reduction of naive T cells, whereas effector and memory phenotype cells were marginally affected by RhoA deficiency. RhoA-deficient naïve T cells were more susceptible to apoptosis, suggesting that homeostatic defect of naïve T cells in RhoA-/- mice is attributed to impaired cell survival. Abrogation of RhoA caused an increased in vivo BrdU incorporation in naïve T cell compartments. Thus, RhoA deficiency induces naïve T cell homeostatic proliferation, possibly due to a compensatory effect of lymphopenia. In contrast to that in thymocytes, Erk was constitutively activated in RhoA-deficient splenic T cells. These observations implicate RhoA in the multiple stages of T cell development and the proper assembly of early TCR signaling complex. Second, deletion of RhoA in pre-proB cells had no effect on early B cell development in bone marrow but significantly inhibited late B cell development in spleen, resulting in 78.2% ± 13.6%, 78.6% ± 16.9%, and 93.2% ± 3.4% reduction in transitional, follicular, and marginal zone B cells, respectively. Plasma cells in spleen were decreased by 50.9 % ± 25.9% in RhoA null mice. However, we did not detect any changes in survival of in vivo RhoA-/- B cells or RhoA-/- B cells cultured in vitro with survival factor BAFF. Distinct from previously characterized Cdc42 knockout mice, BAFF-R expression was not altered in RhoA-/- B cells. Moreover, RhoA-/- B cells appeared to be normal in proliferation and Akt and Erk activation in response to BCR crosslinking. These data suggest that RhoA is important for late B cell development through regulation of differentiation but not cell survival or proliferation. Finally, deletion of RhoA from hematopoietic stem cells did not affect common lymphoid progenitor production, indicating that RhoA is not required for early lymphoid progenitor commitment. Taken together, these lineage-specific mouse genetic studies demonstrate that RhoA critically regulates T and B cell development by distinct cellular mechanisms at multiple stages of lymphopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 220-220 ◽  
Author(s):  
Corey J Cain ◽  
Randell Rueda ◽  
Bryce T McLelland ◽  
Nicole Collette ◽  
Gabriela Loots ◽  
...  

Abstract Abstract 220 Hematopoietic cell fate decisions are dependent on their localized microenvironmental niche. In the bone, endosteal osteoblasts have been shown to support hematopoietic stem cells (HSC) self-renewal, as demonstrated by transgenic and knockout mouse models in which osteoblast populations were increased or decreased. In addition, Wnt signaling and the Wnt antagonist Dkk-1 have been implicated in various aspects of hematopoiesis and HSC self-renewal. Sclerostin (Sost) is a secreted protein that is primarily expressed by fully mature osteocytes and acts on osteoblasts as a negative regulator of bone growth, by antagonizing Wnt signaling by its binding to the Wnt co-receptors Lrp4, Lrp5, and/or Lrp6. Here, we investigated the role of Sost on hematopoiesis in the bone marrow niche. Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in hypermineralized bones with small bone marrow cavities. As such, Sost−/− mice contain markedly reduced numbers of CD45+hematopoietic cells in the bone marrow. Since hematopoietic stem cell activity is dependent on osteoblast function, we examined whether the hyperactive osteoblast activity in Sost−/− mice influences the numbers of hematopoietic stem cells, lymphoid progenitor cells and myeloid progenitor cells in the bone marrow. Surprisingly, no differences were observed in hematopoietic stem and progenitor cell frequency and cell number. However, we found the bone marrow of Sost−/− mice to be depleted of B cells, and this reduction can be attributed to premature apoptosis beginning at the pre-pro-B cell stage. Examination of Sost expression showed that no hematopoietic cells expressed Sost, however, pre-pro, immature and recirculating B cells expressed Lrp5 and Lrp6. These gene expression patterns suggested that the defect in B cell development in Sost−/− mice is non-cell autonomous and that absence of Sost could affect Wnt signaling in these populations. We observed that the expression of Wnt target genes CCND1 and Lef-1 were not affected by the absence of Sost, but c-Myc was significantly upregulated in recirculating B cells in the bone marrow. We also observed a significant decrease in CXCL12 expression in the bone marrow stroma in Sost−/− mice, consistent with their inability to adequately support B cell development. Taken together, our results indicate that the B cell developmental defects in Sost−/− mice are non-cell autonomous, and we are currently performing reciprocal bone marrow transplantation experiments to further support this hypothesis. Our studies demonstrate a novel role for Sost in the regulation of B cell development in the bone marrow, and demonstrate that distinct Wnt antagonists play specific roles in the regulation of hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (5) ◽  
pp. 1281-1290 ◽  
Author(s):  
Phyllis W. Yu ◽  
Ruby S. Tabuchi ◽  
Roberta M. Kato ◽  
Alexander Astrakhan ◽  
Stephanie Humblet-Baron ◽  
...  

Abstract X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacterial infections. Using Btk- and Tec-deficient mice (BtkTec–/–) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)–treated BtkTec–/– mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec–/– recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, recovery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Shunichi Takeda ◽  
Takeyuki Shimizu ◽  
Hans-Reimer Rodewald

Abstract The receptor-type tyrosine kinase, c-kit is expressed in hematopoietic stem cells (HSC), myeloid, and lymphoid precursors. In c-kit ligand-deficient mice, absolute numbers of HSC are mildly reduced suggesting that c-kit is not essential for HSC development. However, c-kit− HSC cannot form spleen colonies or reconstitute hematopoietic functions in lethally irradiated recipient mice. Based on in in vitro experiments, a critical role of c-kit in B-cell development was suggested. Here we have investigated the B-cell development of c-kitnull mutant (W/W ) mice in vivo. Furthermore, day 13 fetal liver cells from wild type or W/W mice were transferred into immunodeficient RAG-2−/− mice. Surprisingly, transferred c-kit− cells gave rise to all stages of immature B cells in the bone marrow and subsequently to mature conventional B2, as well as B1, type B cells in the recipients to the same extent as transferred wild type cells. Hence, in contrast to important roles of c-kit in the expansion of HSC and the generation of erythroid and myeloid lineages and T-cell precursors, c-kit− HSC can colonize the recipient bone marrow and differentiate into B cells in the absence of c-kit.


2018 ◽  
Author(s):  
Arthur Chow ◽  
Jourdan Mason ◽  
Larrisha Coney ◽  
Jamila Bajwa ◽  
Cameron Carlisle ◽  
...  

AbstractUnderstanding how changes in bone physiology and homeostasis affect immune responses will inform how to retain strong immunity in patients with bone disease and in aged individuals. We previously identified sclerostin (Sost) as a mediator of cell communication between the skeletal and the immune system. Elevated bone mineral density in Sost-knockout (Sost-/-) mice contributes to an altered bone marrow microenvironment and adversely affects B cell development. B cells originate from hematopoietic stem cells within the bone marrow and mature in peripheral lymphoid organs to produce antibodies in response to infection and/or vaccination. In this study, we investigated whether the aberrant B cell development observed in the bone marrow of Sost-/- mice extends to peripheral B cells in the spleen during immune challenge, and if these changes were age-dependent. Concomitant with more severe changes in bone architecture, B cell development in the bone marrow and in the spleen worsened with age in Sost-/- mice. B cell responses to T-independent antigens were enhanced in young Sost-/- mice, whereas responses to T-dependent antigens were impaired. Our results support the hypothesis that the adverse effects of B cell development in the Sost-deficient bone marrow microenvironment extends to the peripheral B cell immune response to protein antigens, and suggest that the B cell response to routine vaccinations should be monitored regularly in patients being treated with sclerostin antibody therapy. In addition, our results open the possibility that Sost regulates the T-independent B cell response, which might be applicable to the improvement of vaccines towards non-protein antigens.


Blood ◽  
2020 ◽  
Vol 135 (17) ◽  
pp. 1452-1457 ◽  
Author(s):  
Arianna Troilo ◽  
Claudia Wehr ◽  
Iga Janowska ◽  
Nils Venhoff ◽  
Jens Thiel ◽  
...  

Abstract Common variable immunodeficiency (CVID) is a disease characterized by increased susceptibility to infections, hypogammaglobulinemia, and immune dysregulation. Although CVID is thought to be a disorder of the peripheral B-cell compartment, in 25% of patients, early B-cell development in the bone marrow is impaired. Because poor B-cell reconstitution after hematopoietic stem cell transplantation has been observed, we hypothesized that in some patients the bone marrow environment is not permissive to B-cell development. Studying the differentiation dynamics of bone marrow-derived CD34+ cells into immature B cells in vitro allowed us to distinguish patients with B-cell intrinsic defects and patients with a nonpermissive bone marrow environment. In the former, immature B cells did not develop and in the latter CD34+ cells differentiated into immature cells in vitro, but less efficiently in vivo. In a further group of patients, the uncommitted precursors were unable to support the constant development of B cells in vitro, indicating a possible low frequency or exhaustion of the precursor population. Hematopoietic stem cell transplantation would result in normal B-cell repopulation in case of intrinsic B-cell defect, but in defective B-cell repopulation in a nonpermissive environment. Our study points to the importance of the bone marrow niche in the pathogenesis of CVID.


1994 ◽  
Vol 14 (1) ◽  
pp. 382-390
Author(s):  
S Okada ◽  
Z Q Wang ◽  
A E Grigoriadis ◽  
E F Wagner ◽  
T von Rüden

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.


Sign in / Sign up

Export Citation Format

Share Document