A Novel Model of Autoimmunity to Self Red Blood Cell Antigens

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3461-3461
Author(s):  
Jeanne Hendrickson ◽  
Chantel M. Cadwell ◽  
Christopher D. Hillyer ◽  
James C. Zimring

Abstract Background: Autoimmune hemolytic anemia (AIHA) represents a serious and potentially life-threatening illness. However, the mechanisms by which red blood cell (RBC) autoreactive B cells escape tolerance and subsequently receive the signals required to differentiate into plasma cells are unknown. It has been reported that B1 B cells, a special B cell lineage that arises from gut lymphatics, appear to be resistant to self-tolerance to RBC antigens. However, the existing murine models do not allow experimental juxtaposition of animals with and without the autoantigen. Moreover, in existing models the mice develop AIHA with systemic activation of complement, crosslinking of Fc receptors, phagocytosis of RBCs, and generation of large quantities of hemoglobin breakdown products. Although these events are relevant to the pathology of AIHA, they obscure the underlying immunology of the system. To circumvent these problems, we have designed a novel model of autoimmunity to self RBC antigens that allows the analysis of B cell tolerance in the absence of ongoing hemolytic pathology. Materials/Methods: We generated the HOD mouse, which has RBC specific expression of the model humoral antigen hen egg lysozyme (HEL), linked to the cell membrane by a human blood group antigen (Duffy). HOD mice were crossed with B cell receptor transgenic IgHEL mice that express IgM specific for the HEL antigen. Heterozygotes were used for breeding to generate progeny that include HOD positive × IgHEL positive (“double positives”) and HOD negative × IgHEL positive (“controls”). Anti-HEL expressing B cells were identified by flow cytometry in spleen, bone marrow, and lymph nodes by the anti-HEL transgenic allotype (IgMa) and CD19 expression. B cell maturation was monitored by B220 expression. B1 B cells in the peritoneal cavity were identified utilizing CD11b (anti-MAC1). Serum anti-HEL IgM was determined by flow cytometric cross matching and HEL-specific ELISA (IgG is not secreted by anti-HEL BCR transgenic mice as they do not class switch). Results: Double positive mice had significantly fewer B cells expressing anti-HEL (CD19+, IgMa+) than did control mice (7 fold fewer in spleen, 4 fold fewer in bone marrow, and essentially none in lymph nodes, as measured by % of total lymphocytes). These differences were observed predominantly in mature (B220 high) but not immature (B220 low) B cells. In contrast, while there was a dramatic decrease of conventional B cells in the peritoneum of double positive mice, B1 B cells persisted. These observations were not an artifact of expression of the HOD transgene, as no differences were seen in control HOD positive × IgHEL negative mice. Analysis of serum demonstrated that anti-HEL IgM levels in double positive mice were approximately 50% greater than that of control mice. Conclusions: Utilizing our novel model of B cell tolerance to RBC autoantigens, we report a decrease of self reactive B cells in the spleen, bone marrow, and lymph nodes. This difference is likely generated during or after B cell maturation, as the decrease is restricted to B220 high mature B cells. However, autoreactive B1 B cells escape deletion in the double positive mice and persist in the peritoneum. Although the absolute number of self reactive B cells is significantly lower in the double positive as compared to control mice, autoantibody levels (anti-HEL IgM) are higher. Thus, the small percentage of autoreactive B cells that escape tolerance likely produce large amounts of autoantibody. Unlike models previously described by other investigators, the mice that have lost anti-RBC tolerance described herein show no signs of illness and have a hematocrit similar to that of control mice. Thus, our model provides a unique opportunity to perform well controlled studies on the mechanisms of tolerance to self-RBC antigens in the absence of systemic immune activation that occurs during clinical AIHA. Ongoing studies are investigating the role of B1 B cells on autoimmunity in this model system, as well as potential therapies to eliminate such cells.

2021 ◽  
Vol 118 (16) ◽  
pp. e2021570118
Author(s):  
Thiago Alves da Costa ◽  
Jacob N. Peterson ◽  
Julie Lang ◽  
Jeremy Shulman ◽  
Xiayuan Liang ◽  
...  

Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.


2019 ◽  
Vol 216 (5) ◽  
pp. 1135-1153 ◽  
Author(s):  
Sarah A. Greaves ◽  
Jacob N. Peterson ◽  
Pamela Strauch ◽  
Raul M. Torres ◽  
Roberta Pelanda

Autoreactive B cells that bind self-antigen with high avidity in the bone marrow undergo mechanisms of central tolerance that prevent their entry into the peripheral B cell population. These mechanisms are breached in many autoimmune patients, increasing their risk of B cell–mediated autoimmune diseases. Resolving the molecular pathways that can break central B cell tolerance could therefore provide avenues to diminish autoimmunity. Here, we show that B cell–intrinsic expression of a constitutively active form of PI3K-P110α by high-avidity autoreactive B cells of mice completely abrogates central B cell tolerance and further promotes these cells to escape from the bone marrow, differentiate in peripheral tissue, and undergo activation in response to self-antigen. Upon stimulation with T cell help factors, these B cells secrete antibodies in vitro but remain unable to secrete autoantibodies in vivo. Overall, our data demonstrate that activation of the PI3K pathway leads high-avidity autoreactive B cells to breach central, but not late, stages of peripheral tolerance.


2007 ◽  
Vol 204 (12) ◽  
pp. 2853-2864 ◽  
Author(s):  
Jennifer L. Lamoureux ◽  
Lisa C. Watson ◽  
Marie Cherrier ◽  
Patrick Skog ◽  
David Nemazee ◽  
...  

The initial B cell repertoire contains a considerable proportion of autoreactive specificities. The first major B cell tolerance checkpoint is at the stage of the immature B cell, where receptor editing is the primary mode of eliminating self-reactivity. The cells that emigrate from the bone marrow have a second tolerance checkpoint in the transitional compartment in the spleen. Although it is known that the second checkpoint is defective in lupus, it is not clear whether there is any breakdown in central B cell tolerance in the bone marrow. We demonstrate that receptor editing is less efficient in the lupus-prone strain MRL/lpr. In an in vitro system, when receptor-editing signals are given to bone marrow immature B cells by antiidiotype antibody or after in vivo exposure to membrane-bound self-antigen, MRL/lpr 3-83 transgenic immature B cells undergo less endogenous rearrangement and up-regulate recombination activating gene messenger RNA to a lesser extent than B10 transgenic cells. CD19, along with immunoglobulin M, is down-regulated in the bone marrow upon receptor editing, but the extent of down-regulation is fivefold less in MRL/lpr mice. Less efficient receptor editing could allow some autoreactive cells to escape from the bone marrow in lupus-prone mice, thus predisposing to autoimmunity.


Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5907-5918 ◽  
Author(s):  
Eugenia Manevich-Mendelson ◽  
Valentin Grabovsky ◽  
Sara W. Feigelson ◽  
Guy Cinamon ◽  
Yael Gore ◽  
...  

Abstract Talin1 is a key integrin coactivator. We investigated the roles of this cytoskeletal adaptor and its target integrins in B-cell lymphogenesis, differentiation, migration, and function. Using CD19 Cre-mediated depletion of talin1 selectively in B cells, we found that talin1 was not required for B-cell generation in the bone marrow or for the entry of immature B cells to the white pulp of the spleen. Loss of talin1 also did not affect B-cell maturation into follicular B cells but compromised differentiation of marginal zone B cells. Nevertheless, serum IgM and IgG levels remained normal. Ex vivo analysis of talin1-deficient spleen B cells indicated a necessary role for talin1 in LFA-1 and VLA-4 activation stimulated by canonical agonists, but not in B-cell chemotaxis. Consequently, talin1 null B splenocytes could not enter lymph nodes nor return to the bone marrow. Talin1 deficiency in B cells was also impaired in the humoral response to a T cell-dependent antigen. Collectively, these results indicate that talin1 is not required for follicular B-cell maturation in the spleen or homeostatic humoral immunity but is critical for integrin-dependent B lymphocyte emigration to lymph nodes and optimal immunity against T-dependent antigens.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 39.2-39
Author(s):  
C. Dong ◽  
X. Gu ◽  
J. Ji ◽  
X. Zhang ◽  
Z. Gu

Background:Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that occurs when the body’s immune system attacks own tissues and organs. B cells play a central role in SLE pathogenesis by producing autoantibodies as well as antibody-independent functions. Peripheral B cell abnormality is well known in lupus patients such as expansions of plasmablasts and atypical memory B cells, which are associated with active diseases. However, little is known about the B cell development in the bone marrow of lupus patients.Objectives:We conduct this survey to explore the disorder of the B cell development in the bone marrow of lupus patients.Methods:In this study, we have performed the scRNASeq to profile the bone marrow B cell compartment in lupus patients and healthy donors.Results:We identified that in a subset of lupus patients, the early B cells (proB and preB cells) were strongly decreased, which were confirmed by flow cytometry in an expanded cohort. Furthermore, bone marrow B cells from these patients showed a strong proinflammatory signature revealed by pathway analysis. Interestingly, BCR repertoire analysis showed that the IGHV-4-34 was highly enriched in these patients, indicating an enhanced B cell tolerance defect. Finally, a panel of proinflammatory cytokines (TNF-a, IL-1a, IL-12p70, IFN-g, et al.) were strongly increased in the bone marrow plasma of these patients compared with early B normal patients and healthy donors, confirming a localized proinflammatory microenvironment.Conclusion:Altogether, the current study has revealed that a defective early B cell development in lupus patients is associated with a more severe B cell tolerance defect and aggravated inflammation, which may shed new light on developing novel therapies by targeting relevant pathways.References:[1]Min Wang, Hua Chen, Jia Qiu, et al. Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 2020.[2]A M Jacobi, D M Goldenberg, F Hiepe, et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis, 2008.Acknowledgements:This work was funded by Special project of clinical medicine of Nantong University (Grant/Award number: 2019LQ001), National Natural Science Foundation of China (Grant/Award number: 81671616, 81871278 and 82071838).Disclosure of Interests:None declared


2011 ◽  
Vol 208 (3) ◽  
pp. 617-629 ◽  
Author(s):  
Takayuki Ota ◽  
Miyo Ota ◽  
Bao Hoa Duong ◽  
Amanda L. Gavin ◽  
David Nemazee

Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ–light chain–reactive superantigen targeted to the plasma membrane of hepatocytes (pAlb mice). In contrast to mice expressing κ superantigen ubiquitously, in which κ cells edit efficiently to λ, in pAlb mice, κ B cells underwent clonal deletion. Their κ cells failed to populate lymph nodes, and the remaining splenic κ cells were anergic, arrested at a semi-mature stage without undergoing receptor editing. In the liver, κ cells recognized superantigen, down-regulated surface Ig, and expressed active caspase 3, suggesting ongoing apoptosis at the site of B cell receptor ligand expression. Some, apparently mature, κ B1 and follicular B cells persisted in the peritoneum. BAFF (B cell–activating factor belonging to the tumor necrosis factor family) overexpression rescued splenic κ B cell maturation and allowed κ cells to populate lymph nodes. Our model facilitates analysis of tissue-specific autoimmunity, tolerance, and apoptosis in a polyclonal B cell population. The results suggest that deletion, not editing, is the major irreversible pathway of tolerance induction among peripheral B cells.


1998 ◽  
Vol 188 (5) ◽  
pp. 909-917 ◽  
Author(s):  
Jennifer A. Kench ◽  
David M. Russell ◽  
David Nemazee

Peripheral B cell tolerance was studied in mice of the autoimmune-prone, Fas-deficient MRL/ lpr.H-2d genetic background by introducing a transgene that directs expression of membrane-bound H-2Kb antigen to liver and kidney (MT-Kb) and a second transgene encoding antibody reactive with this antigen (3-83μδ, anti-Kk,b). Control immunoglobulin transgenic (Ig-Tg) MRL/lpr.H-2d mice lacking the Kb antigen had large numbers of splenic and lymph node B cells bearing the transgene-encoded specificity, whereas B cells of the double transgenic (Dbl-Tg) MRL/lpr.H-2d mice were deleted as efficiently as in Dbl-Tg mice of a nonautoimmune B10.D2 genetic background. In spite of the severely restricted peripheral B cell repertoire of the Ig-Tg MRL/lpr.H-2d mice, and notwithstanding deletion of the autospecific B cell population in the Dbl-Tg MRL/lpr.H-2d mice, both types of mice developed lymphoproliferation and exhibited elevated levels of IgG anti-chromatin autoantibodies. Interestingly, Dbl-Tg MRL/lpr.H-2d mice had a shorter lifespan than Ig-Tg MRL/lpr.H-2d mice, apparently as an indirect result of their relative B cell lymphopenia. These data suggest that in MRL/lpr mice peripheral B cell tolerance is not globally defective, but that certain B cells with receptors specific for nuclear antigens are regulated differently than are cells reactive to membrane autoantigens.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2396-2396
Author(s):  
Yongwei Zheng ◽  
Alexander W Wang ◽  
Mei Yu ◽  
Anand Padmanabhan ◽  
Benjamin E Tourdot ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder that can cause fatal arterial or venous thrombosis/thromboembolism. Immune complexes consisting of heparin, platelet factor 4 (PF4) and PF4/heparin-reactive antibodies are central to the pathogenesis of HIT. However, heparin, a glycosoaminoglycan, and PF4 are normal body constituents and it is as yet unclear what triggers the initial induction of pathogenic antibodies. Here we described detection of B cells among peripheral blood mononuclear cells (PBMCs) from each of 9 healthy adults that produced PF4/heparin-specific IgM antibodies following in vitro stimulation with ubiquitous pro-inflammatory molecules containing unmethylated CpG dinucleotides derived from bacterial and viral DNA. PF4/heparin-specific IgM-generating B cells were present at a frequency of at least 0.03 to 1 per thousand B cells present in the PBMC population. Similarly, splenic B cells isolated from unmanipulated wild-type mice consistently produced PF4/heparin-reactive antibodies following in vitro stimulation with CpG. In addition, wild-type mice produced PF4/heparin-reactive antibodies upon in vivo challenge with CpG whereas unchallenged wild-type mice did not. These findings demonstrate that both humans and mice possess pre-existing, inactive and tolerant PF4/heparin-specific B cells. We suggest that tolerance can be broken by a strong inflammatory stimulus, leading to activation of these B cells and production of antibodies that recognize PF4/heparin in vitro and in vivo. Consistent with this concept, mice lacking protein kinase Cd (PKCd), a signaling molecule of the B-cell survival factor BAFF (B-cell activation factor), that are known to have breakdown of B-cell tolerance to self-antigens, spontaneously produced anti-PF4/heparin antibodies in the absence of an inflammatory stimulus. Taken together, these findings demonstrate that breakdown of tolerance can lead to PF4/heparin-specific antibody production and that B-cell tolerance plays an important role in HIT pathogenesis. Disclosures: White II: Bayer: Membership on an entity’s Board of Directors or advisory committees; CSL-Behring: Membership on an entity’s Board of Directors or advisory committees; NIH: Membership on an entity’s Board of Directors or advisory committees; Asklepios: Membership on an entity’s Board of Directors or advisory committees; Wyeth: Membership on an entity’s Board of Directors or advisory committees; Entegrion: Membership on an entity’s Board of Directors or advisory committees; Biogen: Membership on an entity’s Board of Directors or advisory committees; Baxter: Membership on an entity’s Board of Directors or advisory committees.


2005 ◽  
Vol 201 (10) ◽  
pp. 1659-1667 ◽  
Author(s):  
Jonathan Samuels ◽  
Yen-Shing Ng ◽  
Claire Coupillaud ◽  
Daniel Paget ◽  
Eric Meffre

Autoantibody production is a characteristic of most autoimmune diseases including rheumatoid arthritis (RA). The role of these autoantibodies in the pathogenesis of RA remains elusive, but they appear in the serum many years before the onset of clinical disease suggesting an early break in B cell tolerance. The stage of B cell development at which B cell tolerance is broken in RA remains unknown. We previously established in healthy donors that most polyreactive developing B cells are silenced in the bone marrow, and additional autoreactive B cells are removed in the periphery. B cell tolerance in untreated active RA patients was analyzed by testing the specificity of recombinant antibodies cloned from single B cells. We find that autoreactive B cells fail to be removed in all six RA patients and represent 35–52% of the mature naive B cell compartment compared with 20% in healthy donors. In some patients, RA B cells express an increased proportion of polyreactive antibodies that can recognize immunoglobulins and cyclic citrullinated peptides, suggesting early defects in central B cell tolerance. Thus, RA patients exhibit defective B cell tolerance checkpoints that may favor the development of autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document