Talin1 is required for integrin-dependent B lymphocyte homing to lymph nodes and the bone marrow but not for follicular B-cell maturation in the spleen

Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5907-5918 ◽  
Author(s):  
Eugenia Manevich-Mendelson ◽  
Valentin Grabovsky ◽  
Sara W. Feigelson ◽  
Guy Cinamon ◽  
Yael Gore ◽  
...  

Abstract Talin1 is a key integrin coactivator. We investigated the roles of this cytoskeletal adaptor and its target integrins in B-cell lymphogenesis, differentiation, migration, and function. Using CD19 Cre-mediated depletion of talin1 selectively in B cells, we found that talin1 was not required for B-cell generation in the bone marrow or for the entry of immature B cells to the white pulp of the spleen. Loss of talin1 also did not affect B-cell maturation into follicular B cells but compromised differentiation of marginal zone B cells. Nevertheless, serum IgM and IgG levels remained normal. Ex vivo analysis of talin1-deficient spleen B cells indicated a necessary role for talin1 in LFA-1 and VLA-4 activation stimulated by canonical agonists, but not in B-cell chemotaxis. Consequently, talin1 null B splenocytes could not enter lymph nodes nor return to the bone marrow. Talin1 deficiency in B cells was also impaired in the humoral response to a T cell-dependent antigen. Collectively, these results indicate that talin1 is not required for follicular B-cell maturation in the spleen or homeostatic humoral immunity but is critical for integrin-dependent B lymphocyte emigration to lymph nodes and optimal immunity against T-dependent antigens.

Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2339-2345 ◽  
Author(s):  
Annaiah Cariappa ◽  
Catharine Chase ◽  
Haoyuan Liu ◽  
Paul Russell ◽  
Shiv Pillai

Abstract We have recently demonstrated that IgDhi B cells can occupy an extravascular perisinusoidal niche in the bone marrow in addition to the well-established follicular niche in conventional secondary lymphoid organs. The spleen has long been considered to be the site at which newly formed B lymphocytes mature into IgDhi naive recirculating B cells, but the existence of mutant mice that have selectively lost mature B cells in the bone marrow prompted an examination of B-cell maturation at this latter site. Following a single pulse of BrdU in intact mice, sequential labeling of more mature B-cell populations in the bone marrow suggested ongoing maturation at this site. Further evidence for B-cell maturation in the bone marrow was obtained from analyses of transitional B cells in splenectomized lymphotoxin α-deficient mice that lack all secondary lymphoid organs. In these mice, antibody-secreting cells recognizing multivalent antigens were also observed in the bone marrow following an intravenous microbial challenge. These data suggest that newly formed B cells mature into IgDhi B cells simultaneously in the spleen and the bone marrow and establish in a stringent manner that humoral immune responses can be initiated in situ in the bone marrow.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1590-1600 ◽  
Author(s):  
Hiromi Iwasaki ◽  
Chamorro Somoza ◽  
Hirokazu Shigematsu ◽  
Estelle A. Duprez ◽  
Junko Iwasaki-Arai ◽  
...  

Abstract The PU.1 transcription factor is a key regulator of hematopoietic development, but its role at each hematopoietic stage remains unclear. In particular, the expression of PU.1 in hematopoietic stem cells (HSCs) could simply represent “priming” of genes related to downstream myelolymphoid lineages. By using a conditional PU.1 knock-out model, we here show that HSCs express PU.1, and its constitutive expression is necessary for maintenance of the HSC pool in the bone marrow. Bone marrow HSCs disrupted with PU.1 in situ could not maintain hematopoiesis and were outcompeted by normal HSCs. PU.1-deficient HSCs also failed to generate the earliest myeloid and lymphoid progenitors. PU.1 disruption in granulocyte/monocyte-committed progenitors blocked their maturation but not proliferation, resulting in myeloblast colony formation. PU.1 disruption in common lymphoid progenitors, however, did not prevent their B-cell maturation. In vivo disruption of PU.1 in mature B cells by the CD19-Cre locus did not affect B-cell maturation, and PU.1-deficient mature B cells displayed normal proliferation in response to mitogenic signals including the cross-linking of surface immunoglobulin M (IgM). Thus, PU.1 plays indispensable and distinct roles in hematopoietic development through supporting HSC self-renewal as well as commitment and maturation of myeloid and lymphoid lineages.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2752-2752
Author(s):  
Alina E Dulau Florea ◽  
Raul C Braylan ◽  
Kristian T. Schafernak ◽  
Stefania Pittaluga ◽  
Steven M. Holland ◽  
...  

Abstract Background Autosomal dominant germline mutations in the phosphatidylinositol-3-OH kinase (PIK3CD) encoding for the PI(3)K catalytic subunit p110δ, lead to combined immunodeficiency with increased incidence of B-cell lymphomas. (Lucas CL et.al. Nature Immunology 2014). While p110δ is selectively expressed in leukocytes, it is critical for TCR and BCR signaling and lymphocyte homeostasis. Clinically, these patients may present with sinopulmonary infections, bronchiectasis, cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV) viremia, lymphoproliferation and autoimmune cytopenias. Immune phenotype includes naïve CD4+ T cell lymphopenia, expanded terminally differentiated or exhausted T cells, increased circulating transitional B cells and reduced class-switched memory B cells. Herein we report immunophenotypic abnormalities in B-lymphoid maturation in the bone marrow (BM) of 5 patients with PIK3CD mutations. Methods BM from 5 patients with PIK3CD mutations (2 males, 3 females, age range: 4–15 years, median 11.5 years) were studied by flow cytometry (FC), morphology and immunohistochemistry (IHC). BM aspirate from 5 healthy age matched pediatric patients were used as controls for flow cytometric analysis of B-cell subsets and maturation. Antibodies against CD45, CD3, CD4, CD8, CD19, CD10, CD34, CD20, and surface kappa and lambda light chains were used for FC. B-lymphocyte subsets were defined as: early stage precursor B-cells (CD34+/CD19+/CD10+bright/CD20-); intermediate precursor B-cells (CD45+moderate/ CD19+/CD10+moderate/CD34-); and late stage and mature B cells (CD34-/CD10-/CD19+/CD45+bright/CD20+). The intermediate subset corresponds to transitional B cells (developmentally intermediate between immature and mature naive B cells). IHC and in situ hybridization staining were applied to biopsy sections using standard methods. Prism software was used for statistical analyses (Mann-Whitney test). Results There was no significant difference in the median percentage of early B-cell precursors (among all B-lymphocytes) between the PIK3CD patients and the age-matched controls (3.6% vs. 3.7%; p=0.8). However, all PIK3CD marrows showed expanded CD10+ intermediate precursor B-cells which were overall 2.5 times more abundant in PIK3CD marrows than in controls (94.6% vs. 37.4% of all B-cells; p<0.01). Additionally, the PIK3CD patients showed a marked reduction in mature B-cells with 29 times fewer mature CD20+/CD10- B-cells than controls (2% vs 57%; p<0.01). These differences resulted in a markedly abnormal B-cell maturation pattern in all PIK3CD patients (Figs. A and B). A subset of CD10+ and bright CD20+ B-cells expressed polytypic light chains in the PIK3CD marrows. The median CD4:CD8 T-cell ratio was 0.32 in PIK3CD marrows with markedly reduced CD4+ T-cells. BM core biopsies showed overall normal cellularity with increased lymphocytes (20-30% of the cellular marrow). IHC revealed increased CD20+ lymphocytes (15-20% of all nucleated cells) and CD10+ lymphocytes showed similar distribution suggesting coexpression with CD20. TdT and CD34 highlighted approximately 5% of all nucleated cells. CD138, and kappa and lambda light chains showed unremarkable scattered polytypic plasma cells. CD3+ and CD8+ T-cells accounted for 5-10% of BM cells and CD4+ lymphocytes were reduced. EBV was positive in one case. CMV was negative in all cases. Conclusions For the first time, we report B-cell maturation abnormalities in the bone marrow of patients with germline mutations in PIK3CD. All marrows showed an abnormal pattern of B cell maturation characterized by an absolute increase in CD10+ intermediate precursor B-cells and a marked decrease in mature B-cells. The findings suggest either a partial block in B-cell late stage maturation or other mechanism leading to increased CD10+ B-cell precursors and markedly reduced mature B-cells. Lymphoid hyperplasia and lymphoma have been described in PIK3CD patients. The increased CD10+ B cell precursors and the abnormal maturation pattern noted by flow cytometry may mimic CD10+ B-cell neoplasia (e.g. acute lymphoblastic leukemia or Burkitt lymphoma) but detailed analysis showed no morphologic or immunophenotypic evidence of B-cell neoplastic involvement in any of the five patients studied. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1714-1714
Author(s):  
Kilannin Krysiak ◽  
Justin Tibbitts ◽  
Tim H Chen ◽  
Matthew J. Walter

Abstract Abstract 1714 Patients with myelodysplastic syndromes (MDS) have a clonal hematopoietic stem cell disorder that results in dysplastic hematopoietic cells in their bone marrow as well as peripheral blood cytopenias. In addition to the commonly described erythroid and myeloid differentiation defects associated with MDS, a reduction in bone marrow B-cell progenitors exists in patients. The genetic events contributing to the reduction in B-cell progenitors remain poorly understood. The most common cytogentic abnormality identified in patients with MDS, occurring in approximately 35% of patients, is heterozygous interstitial deletion or loss of the long arm of chromosome 5 (5q). The interstitial deletions on chromosome 5 are single copy losses, and no biallelic disruptions of genes in deleted regions have been identified, implicating haploinsufficiency as the underlying genetic mechanism. We, and others, have shown that the levels of HSPA9 mRNA expression are reduced ∼50% in patients with del(5q) when compared to MDS patients without del(5q), consistent with a haploinsufficient phenotype. To model haploinsufficiency, we used shRNA to achieve ∼50% knockdown of Hspa9 in a murine bone marrow transplant model. This model showed a significant reduction in mature B-cells in the bone marrow, spleen, and peripheral blood of recipient mice, implicating HSPA9 haploinsufficiency may contribute to the B-cell alterations observed in MDS patients with del(5q). To further evaluate HSPA9 haploinsufficiency in vivo, we created a mouse model with a heterozygous deletion of Hspa9 (Hspa9+/−) and confirmed a 50% reduction in Hspa9 protein levels in bone marrow and spleen of these mice by Western blot. Hspa9+/− mice are born at normal Mendelian frequencies (N>100), however, breeding heterozygous mice suggests Hspa9−/− mice are embryonic lethal (24 Hspa9+/+:38 Hspa9+/−:0 Hspa9−/−). No significant differences in mature lineage markers, complete blood counts, and hematopoietic organ cellularity, have been identified up to 12 months of age. However, as early as 2 months of age, the numbers of bone marrow CFU-preB colonies as assessed by methylcellulose assay, are significantly reduced in Hspa9+/− mice compared to Hspa9+/+ littermates (14 vs 48 colonies/100,000 bone marrow cells plated, respectively, N=10 mice/genotype, p<0.0001). We performed noncompetitive bone marrow transplants of Hspa9+/− or Hspa9+/+ donor cells into Hspa9+/+ recipient mice and confirmed that the reduction of B-cell progenitors is a hematopoietic cell intrinsic phenotype (N=7–9 mice/genotype, p=0.002). We also confirmed that the Hspa9+/− bone marrow microenvironment did not contribute to the phenotype as transplantation of Hspa9+/+ donor bone marrow cells into Hspa9+/− recipients did not alter the number of CFU-preB colonies (N=5). Total frequencies of common lymphoid progenitors and B-cell precursors (Hardy fractions A, B/C, D, E and F) as assessed by flow cytometry are no different in Hspa9+/− and Hspa9+/+ mice. Therefore, we hypothesize that early Hspa9+/− B-cells may have an intrinsic signaling defect which can be compensated for in vivo. Early B-cell maturation is dependent on intracellular signaling mediated through cell surface receptors in response to environmental cytokines. Consistent with our hypothesis, we showed that Hspa9+/− CFU-preB in vitro colony formation is partially rescued by increasing concentrations of IL7 while Hspa9+/+ colony numbers remain unchanged (fold change in colony formation from 10ng/mL to 50ng/mL IL7 was 1.80 for Hspa9+/− vs. 0.80 for Hspa9+/+, p=0.03, N=6 mice/genotype). Supplementation of the media with another cytokine that contributes to early B-cell maturation, Flt3 ligand, does not alter Hspa9+/− or Hspa9+/+ CFU-preB colony formation, further implicating altered IL7 signaling. We are currently investigating the downstream responses to IL7 stimulation in B-cell progenitors from Hspa9+/− mice. Collectively, these data implicate loss of HSPA9 as a contributing factor in the reduction of B-cell progenitors observed in patients with del(5q) associated MDS. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Maria Victoria Legorreta-Haquet ◽  
Rocio Flores-Fernández ◽  
Francisco Blanco-Favela ◽  
Ezequiel M Fuentes-Pananá ◽  
Luis Chávez-Sánchez ◽  
...  

Prolactin (PRL) plays an important role in modulating the immune response. In B cells, PRL enhances antibody production, including antibodies with self-specificity. In this study, our aims were to determine the level of PRL receptor expression during bone-marrow B-cell development and to assess whether the presence of high PRL serum concentrations influences absolute numbers of developing populations and disease outcome in lupus-prone murine models. We observed that the PRL-receptor is expressed in early bone-marrow B-cell; the expression in lupus-prone mice, which had the highest level of expression in pro-B cells and immature cells, differed from that in wild-type mice. These expression levels did not significantly change in response to hyperprolactinemia; however, populations of pro-B and immature cells from lupus-prone strains showed a decrease in the absolute numbers of cells with high PRL-receptor expression in response to PRL. Because immature self-reactive B cells are constantly being eliminated, we assessed the expression of survival factor BIRC5, which is more highly expressed in both pro-B and immature B-cells in response to PRL and correlates with the onset of disease. These results identify an important role of PRL in the early stages of the B-cell maturation process: PRL may promote the survival of self-reactive clones.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3461-3461
Author(s):  
Jeanne Hendrickson ◽  
Chantel M. Cadwell ◽  
Christopher D. Hillyer ◽  
James C. Zimring

Abstract Background: Autoimmune hemolytic anemia (AIHA) represents a serious and potentially life-threatening illness. However, the mechanisms by which red blood cell (RBC) autoreactive B cells escape tolerance and subsequently receive the signals required to differentiate into plasma cells are unknown. It has been reported that B1 B cells, a special B cell lineage that arises from gut lymphatics, appear to be resistant to self-tolerance to RBC antigens. However, the existing murine models do not allow experimental juxtaposition of animals with and without the autoantigen. Moreover, in existing models the mice develop AIHA with systemic activation of complement, crosslinking of Fc receptors, phagocytosis of RBCs, and generation of large quantities of hemoglobin breakdown products. Although these events are relevant to the pathology of AIHA, they obscure the underlying immunology of the system. To circumvent these problems, we have designed a novel model of autoimmunity to self RBC antigens that allows the analysis of B cell tolerance in the absence of ongoing hemolytic pathology. Materials/Methods: We generated the HOD mouse, which has RBC specific expression of the model humoral antigen hen egg lysozyme (HEL), linked to the cell membrane by a human blood group antigen (Duffy). HOD mice were crossed with B cell receptor transgenic IgHEL mice that express IgM specific for the HEL antigen. Heterozygotes were used for breeding to generate progeny that include HOD positive × IgHEL positive (“double positives”) and HOD negative × IgHEL positive (“controls”). Anti-HEL expressing B cells were identified by flow cytometry in spleen, bone marrow, and lymph nodes by the anti-HEL transgenic allotype (IgMa) and CD19 expression. B cell maturation was monitored by B220 expression. B1 B cells in the peritoneal cavity were identified utilizing CD11b (anti-MAC1). Serum anti-HEL IgM was determined by flow cytometric cross matching and HEL-specific ELISA (IgG is not secreted by anti-HEL BCR transgenic mice as they do not class switch). Results: Double positive mice had significantly fewer B cells expressing anti-HEL (CD19+, IgMa+) than did control mice (7 fold fewer in spleen, 4 fold fewer in bone marrow, and essentially none in lymph nodes, as measured by % of total lymphocytes). These differences were observed predominantly in mature (B220 high) but not immature (B220 low) B cells. In contrast, while there was a dramatic decrease of conventional B cells in the peritoneum of double positive mice, B1 B cells persisted. These observations were not an artifact of expression of the HOD transgene, as no differences were seen in control HOD positive × IgHEL negative mice. Analysis of serum demonstrated that anti-HEL IgM levels in double positive mice were approximately 50% greater than that of control mice. Conclusions: Utilizing our novel model of B cell tolerance to RBC autoantigens, we report a decrease of self reactive B cells in the spleen, bone marrow, and lymph nodes. This difference is likely generated during or after B cell maturation, as the decrease is restricted to B220 high mature B cells. However, autoreactive B1 B cells escape deletion in the double positive mice and persist in the peritoneum. Although the absolute number of self reactive B cells is significantly lower in the double positive as compared to control mice, autoantibody levels (anti-HEL IgM) are higher. Thus, the small percentage of autoreactive B cells that escape tolerance likely produce large amounts of autoantibody. Unlike models previously described by other investigators, the mice that have lost anti-RBC tolerance described herein show no signs of illness and have a hematocrit similar to that of control mice. Thus, our model provides a unique opportunity to perform well controlled studies on the mechanisms of tolerance to self-RBC antigens in the absence of systemic immune activation that occurs during clinical AIHA. Ongoing studies are investigating the role of B1 B cells on autoimmunity in this model system, as well as potential therapies to eliminate such cells.


2010 ◽  
Vol 37 (8) ◽  
pp. 3747-3755 ◽  
Author(s):  
Shaoli Deng ◽  
Tao Yuan ◽  
Xiaoxing Cheng ◽  
Rui Jian ◽  
Jing Jiang

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19521-e19521
Author(s):  
Bartlomiej Przychodzen

e19521 Background: Histone deacetylase inhibitors (HDACi) are small molecules that increase acetylation of lysine residues by blocking histone deactylases. These anticancer agents affect epigenetic and non-epigenetic gene expression resulting in cell cycle arrest of cancer cells. Furthermore HDACi can enhance its anti-tumor effects via the pharmacologic modulation of macrophage. Some HDACi’s such as Trichostatin A (TSA) can also affected the tumor immune microenvironment by suppressing the activity of infiltrating macrophages and inhibiting myeloid-derived suppressor cell recruiement (Li et al.,). Methods: We conducted a high throughput screen comparing gene expression profiles in known hematological cell lines to identify transcriptional signatures associated with TSA sensitivity obtained from GDSC. Results: We selected genes that showed at least 2fold expression difference and were statistically significant (p < 0.05). We identified 49 genes that were upregulated and 85 that were downregulated. The most significant results include multiple genes known to be correlated with the B-cell maturation process. We found that CD24 a small GPI linked glycoprotein expressed at the surface of most B lymphocyte precursors, neutrophils, epithelial cells and frequently found to be highly expressed in various hematological and solid neoplasms, was up/downregulatred by XX. Interestingly, CD24 plays a role in the activation and differentiation of the cells as bone marrow samples lacking CD24 resulted in decreased numbers of both pre-B and immature B-cell populations. We also found that IKZF2, a transcription factor regulating lymphocyte development and queiesence and which is frequently deleted in hypodiploid B-ALLs. This result could revelent as other reports suggest a role of IKZF2 as a tumor suppressor with a central role regulating the balance of self-renewal and differentiation in leukemic stem cells. Conclusions: Our study identified transcriptional profiles which suggest that TSA sensitivity could be related to B cell maturation. Further experiments warrant replication of these findings which could prove useful in creating optimal, TSA-based treatments acting either as potent single agents or in combination enhancing anti-tumor effects of immunotherapies.


1989 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
R D Sanderson ◽  
P Lalor ◽  
M Bernfield

Lymphopoietic cells require interactions with bone marrow stroma for normal maturation and show changes in adhesion to matrix during their differentiation. Syndecan, a heparan sulfate-rich integral membrane proteoglycan, functions as a matrix receptor by binding cells to interstitial collagens, fibronectin, and thrombospondin. Therefore, we asked whether syndecan was present on the surface of lymphopoietic cells. In bone marrow, we find syndecan only on precursor B cells. Expression changes with pre-B cell maturation in the marrow and with B-lymphocyte differentiation to plasma cells in interstitial matrices. Syndecan on B cell precursors is more heterogeneous and slightly larger than on plasma cells. Syndecan 1) is lost immediately before maturation and release of B lymphocytes into the circulation, 2) is absent on circulating and peripheral B lymphocytes, and 3) is reexpressed upon their differentiation into immobilized plasma cells. Thus, syndecan is expressed only when and where B lymphocytes associate with extracellular matrix. These results indicate that B cells differentiating in vivo alter their matrix receptor expression and suggest a role for syndecan in B cell stage-specific adhesion.


Sign in / Sign up

Export Citation Format

Share Document