Targeting the Bcl-2 Family of Proteins in Hodgkin Lymphoma: In Vitro Cytotoxicity, Target Modulation and Drug Combination Studies of the BH3 Mimetic ABT-737

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3626-3626
Author(s):  
Aarthi Jayanthan ◽  
Scott C Howard ◽  
Tanya Trippett ◽  
Terzah M. Horton ◽  
Lara Daisley ◽  
...  

Abstract Introduction: Currently, patients with refractory Hodgkin lymphoma (HL) or those who relapse multiple times have an extremely poor prognosis. Even patients who do not relapse often experience late toxicities, including secondary cancer, heart failure, pulmonary dysfunction, and infertility. Therefore, new agents and novel therapeutic approaches are urgently needed. Anti-apoptotic proteins such as Bcl-2 and Bcl-xl have been found to be associated with the growth and survival of Hodgkin Reed–Sternberg cells and thus carry the potential to be effective targets for therapeutics. In this study we report the in vitro cytotoxicity, biological correlative findings and drug combination analysis of the novel BH3 mimetic ABT-737 [Abbott laboratories (Abbott Park, IL)] against HL cells. Materials and Methods: HL cell lines (KMH2 and HDLM2) were cultured in the presence of increasing concentrations of ABT-737 or its enantiomer control. Normal bone marrow stromal cells were used as controls for non-specific cytotoxicity. Cell growth inhibition was measured by Alamar blue assay and the induction of apoptosis was demonstrated by an annexin specific staining technique. Time and drug concentration dependent changes in proteins involved in cell survival and apoptosis were investigated by Western blot analysis. The ability of ABT-737 to influence the anti-lymphoma activity of a panel of twenty distinct chemotherapeutic agents was evaluated by drug combination and cell growth inhibition studies. Combination indices (CI) were calculated to identify therapeutic enhancement of different agents in the presence of Bcl-2 inhibition by ABT-737. Results: ABT-737 showed significant dose-dependent cytotoxicity and apoptotic activity against HL cells with an approximate IC50 of 1mM with maximum cell death occurring at about 5mM. At the molecular level, increased levels of cleaved caspase3 and PARP, as well as annexin positivity, were noticeable within three hours of treatment with the agent. Drug combination studies have shown the ability of Bcl-2 inhibition to synergize with novel therapeutic agents that target histone deacetylase function (Apicidin, CI 0.35), Hsp90 stability (17-AAG, CI 0.3) and the activity of specific receptor tyrosine kinases (Sorafenib, CI 0.7 and Sunitinib CI 0.3 for HDLM2 and CI 0.9 for KMH2). Among conventional anti-neoplastic agents, ABT-737 showed significant synergistic activity with irinotecan and oxaliplatin (CI 0.6). Importantly, treatment with ABT-737 decreased the expression of the critical HL cell growth promoter, NF- B as determined by band densities on Western blot analysis: a two fold decrease in KMH2 and a five fold decrease in HDLM2 cells. Specific target modulation was demonstrated by changes in key apoptosis and cell survival regulators such as Bcl-XS/L, Bcl-X, p53 and survivin by two to 10 fold decreases in Western blots. Discussion: Data presented in this study support the hypothesis that Bcl-2 family of proteins can be an effective target for therapeutics in HL. We have shown that the BH3 mimetic ABT-737 induces apoptosis in these cells, characterized by the modulation of key components of cell growth and survival pathways. In addition, we have identified distinct classes of anti-lymphoma and anti-neoplastic agents whose activities are enhanced by concurrent inhibition of Bcl-2. These findings provide the rationale for further evaluation of ABT-737 and the subsequent clinical development of a targeted anti-Bcl-2 therapy for refractory Hodgkin lymphoma.

2021 ◽  
Vol 22 (9) ◽  
pp. 4655
Author(s):  
Priyanka Bapat ◽  
Debalina Goswami Sewell ◽  
Mallory Boylan ◽  
Arun K. Sharma ◽  
Julian E. Spallholz

Her/2+ breast cancer accounts for ~25% mortality in women and overexpression of Her/2 leads to cell growth and tumor progression. Trastuzumab (Tz) with Taxane is the preferred treatment for Her/2+ patients. However, Tz responsive patients often develop resistance to Tz treatment. Herein, redox selenides (RSe-) were covalently linked to Tz using a selenium (Se)-modified Bolton–Hunter Reagent forming Seleno-Trastuzumab (Se-Tz; ~25 µgSe/mg). Se-Tz was compared to Tz and sodium selenite to assess the viability of JIMT-1 and BT-474 cells. Comparative cell viability was examined by microscopy and assessed by fluorometric/enzymatic assays. Se-Tz and selenite redox cycle producing superoxide (O2•−) are more cytotoxic to Tz resistant JIMT-1 and Tz sensitive BT-474 cells than Tz. The results of conjugating redox selenides to Tz suggest a wider application of this technology to other antibodies and targeting molecules.


2008 ◽  
Vol 102 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Paola Palozza ◽  
Diana Bellovino ◽  
Rossella Simone ◽  
Alma Boninsegna ◽  
Francesco Cellini ◽  
...  

Lycopene β-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of β-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced β-carotene release and therefore cell growth inhibition. To induce with purified β-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that β-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with β-carotene in promoting cell growth arrest.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


1987 ◽  
Vol 15 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Stephen M. Hunt ◽  
Christina Chrzanowska ◽  
Christopher R. Barnett ◽  
Helen N. Brand ◽  
John K. Fawell

A group of 13 compounds were tested for in vitro cytotoxicity in four test systems; MIT-24 test, inhibition of cell growth (protein method), inhibition of cell growth (vital dye method) and cloning efficiency. In general, all four assays tended to rank compounds in a similar order for toxicity. The length of the exposure period appeared to be important for some compounds. The cytotoxicity of a variety of water samples was examined in two tests; inhibition of cell growth (vital dye method) and cloning efficiency. Under the conditions in which the assays were carried out, the latter proved to be the more sensitive test. River water samples gave little or no indication of cytotoxicity, samples of domestic sewage effluent gave some evidence of cytotoxicity, while an industrial effluent was markedly cytotoxic.


2003 ◽  
Vol 68 (4) ◽  
pp. 779-791 ◽  
Author(s):  
Petr Čapek ◽  
Miroslav Otmar ◽  
Milena Masojídková ◽  
Ivan Votruba ◽  
Antonín Holý

Heating of 6-(benzylamino)-2-chloro-9-deazapurine (3) with ethanolamine afforded 6-(benzylamino)-2-[(2-hydroxyethyl)amino]-9-deazapurine (8). Its treatment with formaldehyde in alkaline solution, after protection of the OH group with DMTr, led to hydroxymethylation at position 9. Conversion of the hydroxymethyl group to methyl was performed by catalytic hydrogenation under simultaneous deprotection, which resulted in the formation of the 9-deaza analogue 1 of olomoucine. Compound 1 does not exhibit any significant in vitro cell growth inhibition of CCRF-CEM, HeLa and L-1210 cell lines. Cytostatic activity was found in 6-(benzylamino)-9-deazapurine (2) and its 2-chloro derivative 3 in CCRF-CEM cells with IC50 13.3 and 15.8 μM, respectively.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1653-1653
Author(s):  
Silvia Locatelli ◽  
Arianna Giacomini ◽  
Anna Guidetti ◽  
Loredana Cleris ◽  
Michele Magni ◽  
...  

Abstract Abstract 1653 Introduction: A significant proportion of Hodgkin lymphoma (HL) patients refractory to first-line chemotherapy or relapsing after autologous transplantation are not cured with currently available treatments and require new treatments. The PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in the majority of HL. These pathways can be targeted using the AKT inhibitor perifosine (Æterna Zentaris GmBH, Germany, EU), and the RAF/MEK/ERK inhibitor sorafenib (Nexavar®, Bayer, Germany, EU). We hypothesized that perifosine in combination with sorafenib might have a therapeutic activity in HL by overcoming the cytoprotective and anti-apoptotic effects of PI3K/Akt and RAF/MEK/ERK pathways. Since preclinical evidence supporting the anti-lymphoma effects of the perifosine/sorafenib combination are still lacking, the present study aimed at investigating in vitro and in vivo the activity and mechanism(s) of action of this two-drug combination. METHODS: Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P ≤.0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of apoptosis. In responsive cell lines, WB analysis showed that anti-proliferative events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P ≤.0001) as well as mice receiving perifosine alone (49 days, P ≤.03) or sorafenib alone (54 days, P ≤.007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P ≤.0001) and necrosis (2- to 8-fold, P ≤.0001), as compared to controls or treatment with single agents. CONCLUSIONS: Perifosine/sorafenib combination resulted in potent anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation in HL patients. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 68 (18) ◽  
pp. 7439-7447 ◽  
Author(s):  
Irina V. Lebedeva ◽  
Zhao-zhong Su ◽  
Nichollaq Vozhilla ◽  
Lejuan Chatman ◽  
Devanand Sarkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document