Role of mTOR Signaling in Erythropoiesis

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3870-3870
Author(s):  
Sathish Kumar Mungamuri ◽  
Saghi Ghaffari

Abstract Erythropoietin (Epo) signaling is required for differentiation of erythroid progenitors to mature red blood cells. Binding of Epo to its receptor activates Jak2, which in turn activates many signaling proteins including AKT, MAPK proteins and STATs. We have shown previously that AKT is required for Epo regulation of erythroid cell maturation; activated AKT complements Epo receptor signaling in JAK2-deficient fetal liver cells and supports erythroid cell differentiation. AKT functions by phosphorylating several proteins including FoxO3 and mTOR. AKT phosphorylation of FoxO3 represses FoxO3’s activity, whereas AKT-dependant phosphorylation activates mTOR and its downstream target p70 S6 kinase (S6K). We have shown recently that FoxO3 is essential for the regulation of erythroid cell cycling, maturation, lifespan and anti-oxidant response (Marinkovic et al., JCI, 2007). Here we aimed at identifying other proteins in AKT signaling network that may regulate the maturation of erythroid progenitors. To address this, we inhibited several signaling pathways and analyzed their role in Epo-dependant maturation of freshly-isolated E14 fetal liver progenitors. As anticipated, blocking PI3-Kinase resulted in 60 % reduction of BFU-E- and CFU-E-derived colony formation and blocked the maturation of erythroid progenitors. Interestingly, blocking either p38 or ERK MAPK signaling showed 40% reduction in erythroid BFU-E- and CFU-E-derived colony formation. Surprisingly, blocking of mTOR signaling inhibited the formation of BFU-E- and CFU-E-derived colonies by 75 %. Further analysis by flow cytometry monitoring of cell surface markers CD71 and TER 119 showed that erythroid progenitor cell maturation could not proceed past early erythroblast stage when cells were cultured in the presence of rapamycin overnight. We confirmed that this block in differentiation was not due to apoptosis of erythroid cells. Since both FoxO3 and mTOR work downstream of AKT, we asked whether inhibition of mTOR has any impact on FoxO3 activity. Epo stimulation of freshly isolated bone marrow lineage-negative cells previously starved from cytokines showed a 2.3 fold increase in FoxO3 phosphorylation in the presence of rapamycin, suggesting cross talk between mTOR and FoxO3. Next, we investigated the effect of loss of FoxO3 on AKT/mTOR signaling in erythroid precursors. To address this, we prepared a population of bone marrow depleted from lineage-restricted cells and cultured under optimum erythroid conditions that generated 60% erythroblasts after 18 hours. Epo stimulation of FoxO3 null erythroid precursors led to hyperphosphorylation of Jak2, AKT, mTOR and S6K as compared to control cells. Since FoxO3 is critical for repression of reactive oxygen species (ROS), we evaluated the potential role of ROS in activating these proteins in FoxO3 mutant erythroid cells. In vitro treatment with ROS scavenger N-Acetyl-Cysteine (NAC) reduced significantly the hyper-phosphorylation of AKT, mTOR and S6K in FoxO3 null erythroid precursors in response to Epo. In addition, our results suggest that phosphorylation of JAK2 and its downstream signaling proteins AKT/mTOR/S6K in primary wild type erythroid precursor cells in response to Epo is mediated by ROS. Interestingly, ROS modulation of phosphorylation of mTOR/S6K was significantly stronger than that of AKT in response to Epo-stimulation of primary erythroid cells. Activation of AKT/mTOR/S6K is likely to mediate increased production of erythroid precursors observed in FoxO3 mutant mice (Marinkovic et al., JCI, 2007). Collectively these results indicate an important function for the AKT/mTOR/S6K signaling pathway in Epo-dependant erythropoiesis and suggest that cytokine-mediated production of ROS plays a critical role in the regulation of primary erythroid cell formation.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 176-176
Author(s):  
Xin Zhang ◽  
Valentina D'Escamard ◽  
Pauline Rimmele ◽  
Saghi Ghaffari

Abstract Abstract 176 Differentiation of erythroid progenitors to mature red blood cells requires erythropoietin receptor (EpoR) signaling. Stimulation of EpoR results in Jak2-mediated activation of mainly AKT, ERK/MAPK and STAT5 signaling pathways. Although alteration of these pathways is involved with the pathophysiology of major erythroid disorders such as beta-thalassemia mechanisms by which these signals impact transcriptional programs of erythroid cell maturation are largely unknown. We have shown previously that AKT signaling is required for Epo-mediated erythroid cell maturation and identified Foxo3 transcription factor, that is negatively regulated by AKT, as a critical regulator of erythroid cell cycle, maturation and lifespan mostly through the control of oxidative stress (Marinkovic et al., JCI, 2007). In addition to Foxo3, AKT regulates several proteins including the mammalian target of rapamycin (mTOR). Here we asked how Foxo3 regulation of oxidative stress impacts erythroid cell maturation. We found that AKT/mTOR signaling pathway is constitutively activated, possibly as part of a feedback loop, in primary Foxo3−/− erythroid precursors. In addition, Epo stimulation of primary Foxo3−/− erythroid precursors led to hyperphosphorylation of Jak2, AKT, mTOR and its target p70S6 Kinase (S6K) as compared to control cells. Since Foxo3 controls levels of reactive oxygen species (ROS) in erythroid cells, and ROS are known to modify signaling proteins, we asked whether ROS are involved in the hyperactivation of AKT/mTOR signaling pathway in Foxo3−/− erythroid precursors. Combined in vivo and in vitro treatment of Foxo3−/− erythroid precursors with ROS scavenger N-Acetyl-Cysteine (NAC) reduced significantly the hyper-phosphorylation of AKT, mTOR and S6K in response to Epo. These results strongly suggest that ROS mediate the hyperactivation of AKT/mTOR signaling pathway in Foxo3−/− erythroid precursors. Next we addressed whether the imbalanced production versus maturation of Foxo3−/− erythroid precursors (Marinkovic et al., JCI, 2007) is due to the constitutive activation of AKT/mTOR signaling. This was indeed the case since in vivo treatment of Foxo3−/− mice for three weeks with the mTOR inhibitor rapamycin shifted the balance from immature towards mature erythroid cells. Interestingly while rapamycin treatment decreased cycling of Foxo3−/− erythroid progenitors as anticipated, it resulted in highly increased proliferation of Foxo3−/− mature erythroblasts as analyzed by in vivo BrdU assay. Importantly, the described Foxo3−/− erythroid phenotype was maintained on two distinct genetic backgrounds (C57BL/6 and BALB/c) in mice. These results strongly suggest that the oxidative stress-induced activation of mTOR signaling pathway mediates the imbalanced production of mature erythroid cells in Foxo3−/− mice. Given that both oxidative stress and delayed erythroid cell differentiation as seen in Foxo3−/−erythroid precursors, contribute significantly to beta-thalassemia, we asked whether the mTOR signaling is involved in the pathogenesis of this disease. Rapamycin treatment improved erythroid cell maturation in the bone marrow as analyzed by cell size, CD44, TER 119 and CD71 surface markers, and resulted in significant increase in total peripheral blood red cells and hemoglobin (1 to 1.5 g/dl increase), significant reduction in reticulocyte production as well as decrease in the spleen size of beta-thalassemic intermedia (th3/+) mice similar to what was seen in Foxo3−/− mice. Collectively these results indicate an important function for the Foxo3-mTOR cross talk in the regulation of erythroid cell maturation and suggest that rapamycin may be considered for treatment of beta-thalassemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2912-2912
Author(s):  
Petros Papadopoulos ◽  
Laura Gutierrez ◽  
Jeroen Demmers ◽  
Dimitris Papageorgiou ◽  
Elena Karkoulia ◽  
...  

Abstract The ordered assembly of a functional preinitiation complex (PIC), composed of general transcription factors (GTFs) is a prerequisite for the transcription of protein coding genes by RNA polymerase II. TFIID, comprised of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is the GTF that is thought to recognize the promoter sequences allowing site-specific PIC assembly. Transcriptional cofactors, such as SAGA (Spt-Ada-Gcn5-acetyltransferase), are also necessary to have tightly regulated transcription initiation. However, a new era on the role of the GTFs and specifically on the role of TFIID in tissue specific and promoter specific transcriptional regulation has emerged in the light of novel findings regarding the differentiation programs of different cell types1. TAF10 is a subunit of both the TFIID and the SAGA co-activator HAT complexes2. The role of TAF10 is indispensable for early embryonic transcription and mouse development as knockout (KO) embryos die early in gestation between E3.5 and E5.5, around the stage when the supply of maternal protein becomes insufficient3. However, when analyzing TFIID stability and transcription it was noted that not all cells and tissues were equally affected by the loss of TAF10. The contribution of the two TAF10-containing complexes (TFIID, SAGA) to erythropoiesis remains elusive. Ablation of TAF10 specifically in erythroid cells by crossing the TAF10-Lox with the EpoR-Cre mouse led to a differentiation block at around E13.5 with erythroid progenitor cells accumulating at a higher percentage (26% in the KO embryos vs 16% in the WTs at E12.5) at the double positive stage KIT+CD71+ and giving rise to fewer mature TER119+ cells in the fetal liver. At E13.5 embryos were dead with almost no erythroid cells in the fetal liver. Gene expression analysis of the fetal liver cells of the embryos revealed down-regulation of GATA1 expression and its target genes, bh1&bmaj/min globins and KLF1 transcription factor while expression of other genes known to have a role in mouse hematopoiesis remained unaffected (MYB, GATA2, PU.1). In order to get insight to the role of TAF10 during erythropoiesis we analyzed the composition of both TAF10-containing complexes (TFIID and SAGA) by mass spectrometry. We found that their stoichiometry changes slightly but not fundamentally during erythroid differentiation and development (human fetal liver erythroid progenitors, human blood erythroid progenitors and mouse erythroid progenitor cells) and no major rearrangements were generated in the composition of the TFIID as it was reported in other cell differentiation programs (e.g. skeletal differentiation, hepatogenesis). Additionally, we found GATA1 transcription factor only in the fetal liver and not in the adult erythroid cells in the mass spectrometry data of TAF10 immunoprecipitations (IPs), an interaction that we confirmed by reciprocal IP of TAF10 and GATA1 in MEL and mouse fetal liver cells. Most importantly, we checked whether TAF10 binding is enriched on the GATA1 locus in human erythroid cells during the fetal and the adult stage in erythroid proerythroblasts and we found that there is enriched binding of TAF10 in the palindromic GATA1 site in the fetal stage. Our results support a developmental role for TAF10 in GATA1 regulated genes, including GATA1 itself, during erythroid differentiation emphasizing the crosstalk between the transcriptional machinery and activators in erythropoiesis. References 1. Goodrich JA, Tjian R (2010) Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nature reviews Genetics 11: 549-558 2 .Timmers HT, Tora L (2005) SAGA unveiled. Trends Biochem Sci 30: 7-10 3. Mohan WS, Jr., Scheer E, Wendling O, Metzger D, Tora L (2003) TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol 23: 4307-4318 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 7-7
Author(s):  
Charu Mehta ◽  
Kirby D Johnson ◽  
Xin Gao ◽  
Irene Ong ◽  
Koichi Ricardo Katsumura ◽  
...  

Abstract GATA-2 levels must be stringently regulated to ensure normal hematopoiesis, and human GATA-2 mutations cause hematologic disorders. GATA-2-regulated enhancers differentially control Gata2 expression in hematopoietic stem/progenitor cells and are essential for hematopoiesis and embryonic development. Mechanisms underlying how the enhancers control Gata2 expression and GATA-2 instigated genetic networks in a cell-specific manner are not completely understood. Targeted deletion of an intronic Gata2 enhancer 9.5 kb downstream of the transcription start site (+9.5) abrogates HSC genesis in the aorta-gonad-mesonephros (AGM) region (Gao et al., JEM, 2013). By contrast, the -77 kb enhancer (-77) activates transcription in myeloid progenitors, and its deletion impairs progenitor differentiation (Johnson et al., Science Advances, 2015). To dissect relationships between the enhancers, we developed a compound heterozygous (CH) mouse model bearing +9.5 and -77 enhancer mutations on different Gata2 alleles. While the CH embryos were alive at E13.5, nearly all died by E14.5 (p = 3.58 x 10-5). Flow cytometric analyses and embryo confocal imaging demonstrated that CH embryos have modestly reduced HSC numbers in the fetal liver (2.9-fold) and the AGM (41%, p = 7.8 x 10-5), which was comparable to +9.5+/- embryos. Thus, -77 does not genetically interact with +9.5 to control HSC emergence. Flow cytometric analysis revealed that Lin-Sca1-Kit+ myelo-erythroid progenitors were 6.6-fold lower in CH vs. WT embryos (p = 1.8 x 10-11), with the difference involving disproportionate losses of GMP (8.6-fold; p = 3.7 x 10-6) and MEP (379-fold; p = 3.2 x 10-9). By contrast, +9.5+/- fetal livers had 2-fold fewer myeloid progenitors, which involved similar reductions of CMP (2.1-fold; p = 1 x 10-6), GMP (2.6-fold; p = 0.0007) and MEP (1.9-fold; p = 0.002). Consistent with the myelo-erythroid progenitor reductions and MEP depletion, CH fetal livers lacked BFU-E (p < 0.001) and CFU-GEMM (p < 0.001) in a colony assay. These results illustrate a genetic interaction between +9.5 and -77 in progenitors, but not HSCs, and a new paradigm in which both enhancers must reside on a single allele to generate MEPs. As erythroid precursor cells express GATA-2, we tested whether the -77 deletion impairs erythroid maturation due to a reduction in myelo-erythroid progenitors or due to a cell-autonomous requirement of the enhancer in erythroid precursors. -77-/- E14.5 fetal livers were pale and smaller than WT counterparts, and -77-/- fetal liver cellularity was reduced 7.2-fold (5.3 x 10-4). When liver size was taken into account, there was little difference in the number of E14.5 R1 cells in -77-/- liver vs. WT littermates (p = 0.31). However, -77-/- R2-R5 cells declined sharply (R2, 8.2-fold, p = 0.004; R3, 14-fold, p < 10-5; R4, 9.7-fold, p = 0.002; R5, 14-fold, p = 0.087). The mutant R1 cells were defective in forming BFU-Es and CFU-Es. Analysis of transcriptomes of purified 77-/- and WT R1 cells from E14.5 fetal livers revealed 2805 and 2519 upregulated and downregulated (p < 0.05) genes, respectively, in -77-/- R1 cells. The -77 enhancer conferred GATA-2 expression, which strongly upregulated GATA-1 and therefore a large GATA-1 target gene cohort. A comparison of WT and -77-/- R1 cell transcriptomes with those of early (Tgbfr3low) and late (Tgbfr3high) BFU-Es (Gao et al., Blood, 2016) revealed a -77-/- R1 signature that correlated with the early BFU-E signature (r = 0.73, p < 10-4) and negatively correlated with the late BFU-E signature (r = -0.42, p = 4 x 10-4) differing from WT cells. In addition to GATA-1 target gene alterations, 253 of the -77-activated genes were not GATA-1-regulated in the G1E-ER-GATA-1 system. These genes included Ryk, which encodes a non-canonical Wnt receptor, and had not been studied in erythroid cells. Two Ryk shRNAs significantly decreased BFU-Es and CFU-GMs in lineage-depleted fetal liver cells. Ongoing studies are integrating Ryk function into signaling circuits that control erythroid maturation and analyzing other -77-regulated targets predicted to constitute new regulators of erythroid cell maturation/function. Thus, loss of the -77 enhancer creates multi-faceted defects in erythroid precursors, involving deficiencies of constituents of signaling and transcriptional circuitry required to enable and drive erythroid maturation. Figure Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4329-4329
Author(s):  
Laura Quotti Tubi ◽  
Sara Canovas Nunes ◽  
Alessandro Casellato ◽  
Elisa Mandato ◽  
Fortunato Zaffino ◽  
...  

Abstract Background. CK2, a serine-threonine kinase composed of two catalytic (α) and two regulatory (β) subunits, has been clearly involved in several hematologic malignancies. This kinase regulates the PTEN/PI3K/AKT, Wnt/βcatenin, Hedgehog, JAK-STAT, cMyc and NF-κB signalling cascades, all of which are known to be of critical importance for hematopoietic stem cell (HSC) biology and normal hematopoiesis. However, the role played by CK2 during blood cell development has remained as yet unexplored. Aims and methods. CK2 function in hematopoiesis was investigated generating conditional knockout mice for CK2β by crossing Csnk2β-Flox/Flox mice with Vav1-CRE transgenic mice. Inactivation of Csnk2β started from 9.5 dpc during embryonic development. Histo-cytological methods, FACS analysis, colony-forming assays (CFA), signal transduction studies by western blotting and RT-PCR were employed to characterize the cellular and molecular phenotype. High throughput RNAseq analysis was also performed on purified Ter119-positive erythroid cells from Csnk2β knockout and Csnk2β control mice to identify differentially expressed CK2-dependent transcriptional targets. Results. Csnk2β knockout in hematopoiesis resulted lethal at mid-late gestation. Rarely some pups were found dead at birth. Macroscopic and phenotypic analysis during gestation revealed the appearance of pale and hydropic fetuses after 12.5 dpc. The majority of pups showed teleangiectasic vessels and haemorrhages. Fetal livers appeared smaller and paler. Cytological analysis and CFA studies unveiled a great depletion of hematopoietic elements belonging to both the erythroid, megakaryocytic and granulocytic-monocytic precursors. A more thorough analysis of the erythroid phenotype revealed that Csnk2β loss caused impairment/loss of red cell maturation at two developmental stages: the earlier stages of Megakaryocyte-Erythroid Precursors (MEP) and pro-erythroblasts and the later stages of terminal maturation (orthocromatic erythroblasts towards reticulocytes). Expression analysis of proteins/genes belonging to known hematopoietic and erythroid-regulating pathways showed perturbations in cell cycle regulatory molecules, cellular apoptosis, a marked reduction of total and phosphorylated Akt in Ser473 and Ser129, a decrease of GATA1 protein levels and a decrease of Hedgehog/Wnt target genes such as Gli-1 and Cyclin D1. Erythropoietin-dependent AKT activation and GATA1 phosphorylation was impaired by Csnk2β loss. Moreover, starting at 14.5 dpc, blood cells displayed a massive p53-dependent response, marked by high levels of p21 and a progressive clear apopototic phenotype. At 17.5 dpc residual hematopoietic cells in the fetal liver were represented by dying erythroid cells, immature myelo-monocytic precursors (expressing high CD11b and low Gr1 levels on the surface) and B-cells displaying an aberrant phenotype with low intensity of expression of B220 and CD19 on the surface. High throughput RNAseq analysis of Ter119-expressing fetal liver cells (erythroid lineage) obtained from 14.5 dpc pups revealed the upregulation of 145 transcripts and the downregulation of 68 transcripts. Among the most increased transcripts were the transcription factors Jun/AP1 and stress-related intermediaries and embryonal globin ε and ζ chains. Among the most decreased transcripts were sugar transporters, glycoproteins CD36 and CD59a, Duffy Blood Group Atypical Chemokine Receptor and component members. Conclusions. We found that Csnk2β plays a critical role in mouse blood development by regulating definitive hematopoiesis of all the hematopoietic cell lineages; however, Csnk2β was needed for the early and late erythropoiesis whilst its loss could be compatible with a certain extent of immature/altered myelo-monocytic and B cell development. Among the pathways found targeted by Csnk2β loss were the PI3K/Akt and the p53-p21 cascades. Our data also suggest that Csnk2β might have a role in the proper activation of the erythroid master regulator GATA1. Moreover, RNAseq analysis revealed that this kinase might have a broader impact during erythroid cell maturation by regulating the activity of critical stress related transcription factors, of molecules regulating energy-managing cellular processes and of mechanisms controlling the switch from embryonal to fetal erythropoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 907-915 ◽  
Author(s):  
Wei Zhao ◽  
Claire Kitidis ◽  
Mark D. Fleming ◽  
Harvey F. Lodish ◽  
Saghi Ghaffari

AbstractErythropoietin (Epo) stimulation of its receptor's downstream signaling pathways and optimum function of GATA-1 transcription factor are both essential for normal erythroid cell development. Epo-receptor (EpoR) signaling and GATA-1 regulate proliferation, survival, differentiation, and maturation of erythroid cells. Whether any signal that is generated by EpoR targets GATA-1 or affects GATA-1 transcriptional activity is not known. Here, we demonstrate that stimulation of EpoR results in phosphorylation of GATA-1 at serine 310 (S310) in primary fetal liver erythroid progenitors and in cultured erythroid cells. We show that phosphorylation of GATA-1 is important for Epo-induced maturation of fetal liver erythroid progenitor cells. The PI3-kinase/AKT signaling pathway is identified as a mediator of Epo-induced phosphorylation of GATA-1. AKT serine threonine kinase phosphorylates GATA-1S310 in vitro and in erythroid cells and enhances GATA-1 transcriptional activity. These data demonstrate that EpoR signaling phosphorylates GATA-1 and modulates its activity via the PI3-kinase/AKT signaling pathway.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1888-1891 ◽  
Author(s):  
Saghi Ghaffari ◽  
Claire Kitidis ◽  
Wei Zhao ◽  
Dragan Marinkovic ◽  
Mark D. Fleming ◽  
...  

AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver–derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 940-940
Author(s):  
Sayantani Sinha ◽  
Ritama Gupta ◽  
Jianbing Zhang ◽  
Amaliris Guerra ◽  
Ping La ◽  
...  

Anemia of inflammation, also known as anemia of chronic disease is the second most common anemia after iron deficiency anemia. The predominant regulators of AI are the cytokine-interleukin-6 (IL6) and the hormone hepcidin (Hamp). IL6 has been implicated in inducing expression of hepcidin. Published data from our lab have shown that lack of IL6 or hepcidin in knockout mouse models (IL6-KO and Hamp-KO) injected with the heat-killed pathogen Brucella abortus(BA) results in recovery from anemia but interestingly the pattern of the recovery was different in IL6-KO and Hamp-KO mice, suggesting that the two proteins contribute independently to AI. Here, we validated the independent role of IL6 and Hamp in AI by generating a double-knockout (DKO) mouse model lacking the expression of both. In the first few days following BA administration, we observed severe reduction in the total number of BM cells in each model followed by a slow recovery in erythroid and multilineage hematopoietic cells. The recovery, initially, was more sustained in the BA-treated-DKO model. In particular, in the first week, BA-treated-DKO mice showed an increased number of erythroblasts in the bone marrow (BM) and spleen as seen in comparison to IL6-KO and Hamp-KO. IL6-KO mice showed an intermediate recovery profile when compared to DKO and Hamp-KO, the last one showing the worst profile in the BM. Interestingly, when the reticulocyte count in the DKO mice was compared to that of IL6-KO and Hamp-KO mice, it showed a biphasic trend, with a significant increase in number during the 2nd week, followed by a significant reduction during the 3rd week. We hypothesized that the initial surge in reticulocyte count in DKO was due to lack of hepcidin, which increases iron availability to erythroid cells, and concurrent lack of IL6, which favors BM erythropoiesis in presence of inflammatory stimuli. However, we also speculated that the excess of iron (as NTBI), which accumulates during the first two weeks, leads to oxidative stress and erythroid cell death in presence of inflammatory cytokines, despite the absence of IL6. We also surmised that, during the second week, a second wave of inflammatory cytokines is triggered by the adaptive response in response to the BA that would explain the negative effect on erythropoiesis after the initial recovery. To assess this hypothesis, we utilized an inflammation panel to analyze the cytokine expression in WT animals treated with PBS or BA at 6 hours, 24 hours and then around ~2 weeks. The cytokine levels were normalized after 24 hours. However, around two weeks, we observed a novel surge of cytokines such as IFN-g and TNFa in the BA treated mice, indicating their role in innate (immediate effect; 6 hours) and adaptive immune response, which activated a second wave of inflammation (around 2 weeks, during the recovery of hematopoiesis in the BM). Interestingly, while we observed oxidative stress and defective erythropoiesis in the bone marrow, this was not seen in the spleen, where increased and extramedullary erythropoiesis sustained some level of RBC production. Since the BA-treated-IL6-KO did not show any major defect in the BM after two weeks, we challenged them with administration of iron dextran. Upon treatment, also the IL6-KO mice treated with both BA and iron dextran shown increased production of reactive oxygen species as well as a defect in bone marrow erythropoiesis, similarly as in DKO or Hamp-KO mice, thereby explaining the plausible reason of reduced erythropoiesis in the bone-marrow. Furthermore, to identify mechanisms leading to oxidative stress, we established an in-vitro culture system where primary murine bone marrow cells were cultured for 18-20 hours in presence of serum isolated after 6hrs from either PBS treated or BA treated C57BL/6 mice. With the help of confocal microscopy, we observed an increase in mitochondrial superoxide in the cells treated with BA serum; interestingly we have also seen a decrease in Ter 119 population in the cells cultured with BA treated serum implicating that the erythroid cells are dying. To further investigate the downstream players related to the death of erythroid progenitors we are currently investigating the role caspase 1 (a major regulator in pyroptosis) and Gata-1. In conclusion, this study is elucidating some of the mechanisms associated with the anemia triggered by inflammation with the potential to identify new targets and treatments. Disclosures Rivella: Disc medicine, Protagonist, LIPC, Meira GTx: Consultancy; Meira GTx, Ionis Pharmaceutical: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2513-2517 ◽  
Author(s):  
K Hamamura ◽  
H Matsuda ◽  
Y Takeuchi ◽  
S Habu ◽  
H Yagita ◽  
...  

Hematopoiesis requires specific interactions with the microenvironments, and VLA-4 has been implicated in these interactions based on in vitro studies. To study the role of VLA-4 in hematopoiesis in vivo, we performed in utero treatment of mice with an anti-VLA-4 monoclonal antibody. Although all hematopoietic cells in fetal liver expressed VLA-4, the treatment specifically induced anemia. It had no effect on the development of nonerythroid lineage cells, including lymphoids and myeloids. In the treated liver almost no erythroblast was detected, whereas the erythroid progenitors, which give rise to erythroid colonies in vitro, were present. These results indicate that VLA-4 plays a critical role in erythropoiesis, while it is not critical in lymphopoiesis in vivo.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 483-490 ◽  
Author(s):  
PT Rowley ◽  
BM Ohlsson-Wilhelm ◽  
BA Farley

Abstract Neuraminidase treatment of human fetal liver or adult marrow cells prior to culture results in an increased number of erythroid colonies and bursts. No increase occurs in the number of nonerythroid colonies. The number of bursts having more than eight subunits is increased preferentially. Individual burst subunits are also enlarged. Neuraminidase-treated cells yield erythroid bursts when cultured in concentrations of erythropoietin insufficient to produce bursts from untreated cells. It is proposed that (1) neuraminidase treatment of adult and fetal cell mixtures specifically stimulates differentiation of erythroid precursors, (2) the preferential stimulation of erythroid bursts having many subunits suggests a preferential susceptibility of more primitive BFU-Es, and (3) neuraminidase treatment enhances the response of erythroid precursors to erythropoietin.


1977 ◽  
Vol 55 (5) ◽  
pp. 571-575 ◽  
Author(s):  
L. F. Congote ◽  
F. Bruno ◽  
S. Solomon

α-Fetoprotein and the synthesis of heme associated with hemoglobin were measured simultaneously in short-term cultures of human fetal liver cells to correlate the relationship of α-fetoprotein to erythroid cell function. Both synthetic processes decreased exponentially during the first 5 days of culture. The use of media supplemented with different batches of fetal calf serum and porcine portal vein serum indicated that the optimal conditions for the production of α-fetoprotein were different from those required for the synthesis of heme associated with hemoglobin. Moreover, the α-fetoprotein-producing cells could be separated from erythroid cells after velocity sedimentation in Ficoll gradients. Although it is well known that erythropoiesis and α-fetoprotein production occur simultaneously during ontogenesis, α-fetoprotein itself (0.01–100 μg/ml) did not stimulate heme synthesis in liver erythroid cells. Erythropoietin did not stimulate α-fetoprotein production. It is concluded that there is no cause–effect relationship between α-fetoprotein production and erythroid cell function in human fetal liver cells and that the two processes occur independently in different cell types.


Sign in / Sign up

Export Citation Format

Share Document