scholarly journals Elucidating the Role of IL6 in Stress Erythropoiesis and in the Development of Anemia Under Inflammatory Conditions

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 940-940
Author(s):  
Sayantani Sinha ◽  
Ritama Gupta ◽  
Jianbing Zhang ◽  
Amaliris Guerra ◽  
Ping La ◽  
...  

Anemia of inflammation, also known as anemia of chronic disease is the second most common anemia after iron deficiency anemia. The predominant regulators of AI are the cytokine-interleukin-6 (IL6) and the hormone hepcidin (Hamp). IL6 has been implicated in inducing expression of hepcidin. Published data from our lab have shown that lack of IL6 or hepcidin in knockout mouse models (IL6-KO and Hamp-KO) injected with the heat-killed pathogen Brucella abortus(BA) results in recovery from anemia but interestingly the pattern of the recovery was different in IL6-KO and Hamp-KO mice, suggesting that the two proteins contribute independently to AI. Here, we validated the independent role of IL6 and Hamp in AI by generating a double-knockout (DKO) mouse model lacking the expression of both. In the first few days following BA administration, we observed severe reduction in the total number of BM cells in each model followed by a slow recovery in erythroid and multilineage hematopoietic cells. The recovery, initially, was more sustained in the BA-treated-DKO model. In particular, in the first week, BA-treated-DKO mice showed an increased number of erythroblasts in the bone marrow (BM) and spleen as seen in comparison to IL6-KO and Hamp-KO. IL6-KO mice showed an intermediate recovery profile when compared to DKO and Hamp-KO, the last one showing the worst profile in the BM. Interestingly, when the reticulocyte count in the DKO mice was compared to that of IL6-KO and Hamp-KO mice, it showed a biphasic trend, with a significant increase in number during the 2nd week, followed by a significant reduction during the 3rd week. We hypothesized that the initial surge in reticulocyte count in DKO was due to lack of hepcidin, which increases iron availability to erythroid cells, and concurrent lack of IL6, which favors BM erythropoiesis in presence of inflammatory stimuli. However, we also speculated that the excess of iron (as NTBI), which accumulates during the first two weeks, leads to oxidative stress and erythroid cell death in presence of inflammatory cytokines, despite the absence of IL6. We also surmised that, during the second week, a second wave of inflammatory cytokines is triggered by the adaptive response in response to the BA that would explain the negative effect on erythropoiesis after the initial recovery. To assess this hypothesis, we utilized an inflammation panel to analyze the cytokine expression in WT animals treated with PBS or BA at 6 hours, 24 hours and then around ~2 weeks. The cytokine levels were normalized after 24 hours. However, around two weeks, we observed a novel surge of cytokines such as IFN-g and TNFa in the BA treated mice, indicating their role in innate (immediate effect; 6 hours) and adaptive immune response, which activated a second wave of inflammation (around 2 weeks, during the recovery of hematopoiesis in the BM). Interestingly, while we observed oxidative stress and defective erythropoiesis in the bone marrow, this was not seen in the spleen, where increased and extramedullary erythropoiesis sustained some level of RBC production. Since the BA-treated-IL6-KO did not show any major defect in the BM after two weeks, we challenged them with administration of iron dextran. Upon treatment, also the IL6-KO mice treated with both BA and iron dextran shown increased production of reactive oxygen species as well as a defect in bone marrow erythropoiesis, similarly as in DKO or Hamp-KO mice, thereby explaining the plausible reason of reduced erythropoiesis in the bone-marrow. Furthermore, to identify mechanisms leading to oxidative stress, we established an in-vitro culture system where primary murine bone marrow cells were cultured for 18-20 hours in presence of serum isolated after 6hrs from either PBS treated or BA treated C57BL/6 mice. With the help of confocal microscopy, we observed an increase in mitochondrial superoxide in the cells treated with BA serum; interestingly we have also seen a decrease in Ter 119 population in the cells cultured with BA treated serum implicating that the erythroid cells are dying. To further investigate the downstream players related to the death of erythroid progenitors we are currently investigating the role caspase 1 (a major regulator in pyroptosis) and Gata-1. In conclusion, this study is elucidating some of the mechanisms associated with the anemia triggered by inflammation with the potential to identify new targets and treatments. Disclosures Rivella: Disc medicine, Protagonist, LIPC, Meira GTx: Consultancy; Meira GTx, Ionis Pharmaceutical: Membership on an entity's Board of Directors or advisory committees.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lidia Ibáñez ◽  
María Luisa Ferrándiz ◽  
Rita Brines ◽  
David Guede ◽  
Antonio Cuadrado ◽  
...  

Objective. Redox imbalance contributes to bone fragility. We have evaluated the in vivo role of nuclear factor erythroid derived 2-related factor-2 (Nrf2), an important regulator of cellular responses to oxidative stress, in bone metabolism using a model of postmenopausal osteoporosis.Methods. Ovariectomy was performed in both wild-type and mice deficient in Nrf2 (Nrf2−/−). Bone microarchitecture was analyzed byμCT. Serum markers of bone metabolism were also measured. Reactive oxygen species production was determined using dihydrorhodamine 123.Results. Sham-operated or ovariectomized Nrf2−/−mice exhibit a loss in trabecular bone mineral density in femur, accompanied by a reduction in cortical area in vertebrae. Nrf2 deficiency tended to increase osteoblastic markers and significantly enhanced osteoclastic markers in sham-operated animals indicating an increased bone turnover with a main effect on bone resorption. We have also shown an increased production of oxidative stress in bone marrow-derived cells from sham-operated or ovariectomized Nrf2−/−mice and a higher responsiveness of bone marrow-derived cells to osteoclastogenic stimuli in vitro.Conclusion. We have demonstrated in vivo a key role of Nrf2 in the maintenance of bone microarchitecture.


Blood ◽  
1975 ◽  
Vol 45 (5) ◽  
pp. 671-679 ◽  
Author(s):  
LA Malgor ◽  
CC Blanc ◽  
E Klainer ◽  
SE Irizar ◽  
PR Torales ◽  
...  

Abstract A stimulatory effect on bone marrow cellularity was observed in normal and nephrectomized rats continuously infused with T3 and T4. Results of bone marrow studies are expressed in absolute numbers of total nucleated erythroid cells per milligram of femoral marrow at the beginning and after 8 hr of continuous intravenous infusions. Administration of T3 and T4 to nephrectomized rats produced a marked and significant increase in total erythroid cells counted. After differential analyses of the nucleated erythroid elements, a significant increase in all erythroid cell types was also observed. Similar results were seen in a control group of rats in which both ureters have been previously ligated and in groups of nephrectomized rats receiving rabbit antiserum against erythropoietin before starting the intravenous infusions of T3 and T4. These results indicate that stimulation of marrow erythropoiesis produced by thyroid hormones in our system is not dependent on renal or extra-renal production of erythropoietin. The progressive introduction of T3 and T4 into the circulation of rats with bilateral nephrectomy or ureter-ligated normal rats, may overload the mechanism of transport of these hormones in plasma. As a consequence, a progressive increase in free active forms of T3 and T4 in plasma may occur. Our interpretation of the present findings is that thyroid hormones stimulate directly bone marrow erythropoiesis. This stimulation is clearly evident when high levels of free active forms of thyroid hormones are present in plasma.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 886 ◽  
Author(s):  
Shima Taherkhani ◽  
Katsuhiko Suzuki ◽  
Lindy Castell

Excessive release of inflammatory cytokines and oxidative stress (OS) are triggering factors in the onset of chronic diseases. One of the factors that can ensure health in humans is regular physical activity. This type of activity can enhance immune function and dramatically prevent the spread of the cytokine response and OS. However, if physical activity is done intensely at irregular intervals, it is not only unhealthy but can also lead to muscle damage, OS, and inflammation. In this review, the response of cytokines and OS to exercise is described. In addition, it is focused predominantly on the role of reactive oxygen and nitrogen species (RONS) generated from muscle metabolism and damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, the influence of factors such as age, sex, and type of exercise protocol (volume, duration, and intensity of training) is analyzed. The effect of antioxidant supplements on improving OS and inflammatory cytokines is somewhat ambiguous. More research is needed to understand this issue, considering in greater detail factors such as level of training, health status, age, sex, disease, and type of exercise protocol.


2011 ◽  
Vol 25 (8) ◽  
pp. 850-856 ◽  
Author(s):  
A.M. El-Mowafy ◽  
H.A. Salem ◽  
M.M. Al-Gayyar ◽  
M.E. El-Mesery ◽  
M.F. El-Azab

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2615-2615
Author(s):  
Wolfgang Kern ◽  
Claudia Schoch ◽  
Susanne Schnittger ◽  
Torsten Haferlach

The diagnosis and classification of myelodysplastic syndromes (MDS) are based on cytomorphology (CM) and cytogenetics. A high degree of experience in CM is required to allow the accurate identification of dysmyelopoiesis and quantification of bone marrow blasts. The identification of dysplastic features in all lineages by multiparameter flow cytometry (MFC) has been shown feasible. To further analyze the potential role of MFC in the diagnostic work-up of MDS we analyzed 224 bone marrow samples from patients with suspected of proven MDS by MFC, CM, and cytogenetics in parallel. Blast counts as determined by CM and MFC, respectively, ranged from 0% to 21% (median, 5%) and from 0% to 33% (median, 4%; correlation: r=0.192, p=0.018). The median number of aberrant features detected by MFC were 0 for blasts (range, 0 to 4), 2 for granulocytes (0 to 7), 1 for monocytes (0 to 5), and 0 for erythrocytes (0 to 2). The most frequent dysplastic features observed in the blast populations included aberrant coexpression of CD11b (20.5%), CD15 (14.3%) and CD64 (14.3%). The most frequent dysplastic features observed in the granulocytic cell populations included reduced side-scatter signal corresponding to hypogranulation (71.4%), aberrant coexpression of CD56 (29.0%), aberrant pattern of CD13/CD16 expression (26.3%), aberrant pattern of CD11b/CD16 expression (25.9%), reduced expression of CD64 (17.0%), and aberrant expression of HLA-DR (14.7%). The most frequent dysplastic features observed in the monocytic cell populations included aberrant coexpression of CD56 (31.3%), aberrant coexpression of CD16 (26.3%), an aberrant pattern of CD11b/HLA-DR expression (6.7%), and aberrant coexpression of CD2 (5.8%). The most frequent dysplastic features observed in the erythroid cell populations included an aberrantly strong expression of CD71 and CD235a (23.7%), a lack of CD71 expression (10.7%), and an aberratly homogeneous expression of CD71 (7.1%). The presence of dysplastic features by CM as well as the presence of cytogenetic aberrations tended to be associated with a higher number of dysplastic features by MFC. These data suggest that the identification of dysplastic features by MFC is feasible although there is a large heterogeneity in aberrantly expressed antigens. Thus, a comprehensive panel of antibodies must be applied to allow the detection of dysplasia. Future studies will define the role of MFC in optimizing the diagnosis of MDS in cooperation with CM and cytogenetics.


1970 ◽  
Vol 45 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Edith K. MacRae ◽  
Gerald D. Meetz

The product of the postformalin ammoniacal silver reaction, which has been claimed to distinguish lysine-rich from arginine-rich histones with the light microscope on the basis of a color difference, was examined in developing erythroid cells of chick bone marrow with the electron microscope. Stem cells and early erythroblasts exhibit no, or little, ammoniacal silver reaction product, while small basophilic erythroblasts, polychromatophilic erythrocytes, and reticulocytes exhibit an increasing amount of reaction product as maturation proceeds. The reaction product is in the form of discrete electron-opaque particles associated with heterochromatin. The ammoniacal silver reaction in the erythroid cell series is interpreted as reflecting either the accumulation of newly synthesized arginine-rich histones or changes in the availability of reactive sites in preformed histones.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 949-949
Author(s):  
Q. Jeremy Wen ◽  
Brittany Woods ◽  
Qiong Yang ◽  
Chiu Sophia ◽  
Gu Lillu ◽  
...  

Abstract Aberrant megakaryopoiesis is a hallmark of the myeloproliferative neoplasms (MPN). It is has been long known that abnormal megakaryocytes secrete elevated levels of cytokines such as TGFβ, resulting in pathologies including bone marrow fibrosis. Two recent studies showed that megakaryocytes regulate the quiescence of HSCs, raising the possibility that megakaryocytes may promote the MPNs by influencing the biology of non-malignant HSCs. However, the mechanism by which megakaryocytes regulate the initiation and progression of MPNs is largely unknown. To study the role of megakaryocytes in the MPNs, we analyzed the phenotype of PF4-Cre/Jak2V617F mice in which Jak2 is expressed in the megakaryocyte lineage from the endogenous locus, in contrast to previous studies, which used transgenic models. Selective activation of Jak2V617F was confirmed by allele-specific qPCR. CD41+ cells were positive for mutant Jak2, whereas sorted stem/progenitor cells and erythroid cells were Jak2 wild-type. Furthermore, flow cytometry showed that Stat5 activation was present in megakaryocytes, but not in erythroid or myeloid cells. Activation of JAK-STAT signaling caused an expansion of megakaryocytes in the bone marrow and spleen and a modest increase in the platelet count. Surprisingly, PF4-Cre/Jak2V617F mice also displayed a robust expansion of TER119(low)/CD71(high) and TER119(high)/CD71(high) red cells in the spleen, increased hematocrit and splenomegaly. Histological examination of the spleen revealed expansion of the erythroid lineage coupled with disrupted splenic architecture and fibrosis. This PV-like phenotype was fully penetrant and comparable to that of Vav-Cre/Jak2V617F mice, which express mutant Jak2 in all hematopoietic lineages. Profiling of hematopoietic progenitors by flow cytometry demonstrated that myeloid progenitor populations were expanded and skewed toward the erythroid-megakaryocyte lineage with a significant increase in Pre Meg-E, Pre CFU-E and MKPs in the PF4Cre/Jak2V617F mice. In addition, LSK cells were increased in both the bone marrow and spleen. Cytokine profiling of the plasma revealed increased levels of several cytokines, including Il-6, which is known to be upregulated in human JAK2 mutant PV megakaryocytes. Significant increases in Cxcl1, Cxcl2, and Ccl11 were also detected. Real-time qPCR analysis confirmed increased expression of these cytokines/chemokines in Jak2V617F-mutant CD41+ cells. Furthermore, IL6 treatment increased EPO-dependent colony formation of wild type LSKs and MEPs, and also enhanced expression of the erythroid cell markers CD71 and Ter119. To further explore the role of megakaryocytes in the MPNs, we used a strategy in which expression of the diphtheria toxin receptor (DTR) sensitizes cells to diphtheria toxin (DT). We transduced c-Kit+ cells from PF4-Cre/iDTR+/- mice with MPLW515L and transplanted the cells to irradiated mice. As expected, both iDTR+/- and PF4-Cre/iDTR+/- mice developed a PMF-like phenotype, including leukocytosis, thrombocytosis, splenomegaly and myelofibrosis (Fig 1). Treatment of these animals with DT caused significant reductions in megakaryocytes in the bone marrow and spleen as well as a decrease in the platelet count of PF4-Cre/iDTR+/- mice. Of note, DT also significantly reduced the white count and spleen weight, while restoring splenic architecture. PF4Cre/iDTR+/- mice also showed significant reduction of c-Kit+ myeloid progenitor cells. Therefore, depletion of megakaryocytes significantly attenuated the disease phenotype of MPLW515L induced MPN in vivo. Together, these two model systems reveal that JAK2 activation in megakaryocytes is sufficient and necessary for MPNs and support the development of megakaryocyte differentiation therapy in the disease. Moreover our data resonate with studies in MPN patients in which a JAK2V617F low allele burden in the setting of full-blown, clinical MPN. figure 1 Depletion of megakaryocytes attenuated the MPN phenotype induced by MPLW515L. c-Kit+ bone marrow cells of IDTR+/- mice with or without PF4Cre were transduced with retroviruses carrying MPLW515L. Injection of diphtheria toxin (DT) was initiated on day 28 post-transplant. Depletion of megakaryocytes by DT reduced platelet and white count (A, B), decreased spleen weight (C) and reduced megakaryocyte and erythroid cell infiltration in the spleen (D). *, p<0.05, **, p<0.01. figure 1. Depletion of megakaryocytes attenuated the MPN phenotype induced by MPLW515L. c-Kit+ bone marrow cells of IDTR+/- mice with or without PF4Cre were transduced with retroviruses carrying MPLW515L. Injection of diphtheria toxin (DT) was initiated on day 28 post-transplant. Depletion of megakaryocytes by DT reduced platelet and white count (A, B), decreased spleen weight (C) and reduced megakaryocyte and erythroid cell infiltration in the spleen (D). *, p<0.05, **, p<0.01. Disclosures Levine: Novartis: Consultancy; Qiagen: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document