CD72 Expression Patterns in ZAP70 Positive and Negative Chronic Lymphocytic Leukemia: Potential Regulatory Role in BCR Signalling

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4159-4159
Author(s):  
Francisco P. Careta ◽  
Rodrigo A. Panepucci ◽  
Daniel M Matos ◽  
Rodrigo Proto-Siqueira ◽  
Wilson A. Silva-Junior ◽  
...  

Abstract Introduction: Absence of mutations in IgVH genes or higher number of ZAP70+ cells (as a surrogate marker) in chronic lymphocytic leukemia (CLL) B-cells defines a patient group with a poorer clinical course. These features relate to the role of BCR signalling in the proliferation and survival of CLL B-cells, and establish a link between these markers and the biology of CLL prognostic subgroups. The identification of additional players in this context may help to better understand the molecular basis of this disease and contribute to develop new therapeutic approaches. A search for genes potentially related to BCR signalling, when comparing mutated and unmutated CLL cases using serial analysis of gene expression, revealed a 4-fold increase of CD72 tags in unmutated samples, a specific B cell surface glycoprotein known to transmit both positive and negative signals in BCR signalling. Objective: This finding lead us to explore the potential role of CD72 on BCR signalling in distinct CLL prognostic subgroups, as defined by ZAP70 expression. Methods: Percentage of ZAP70+ and CD72+ cells were evaluated by flow cytometry on gated CD19+CD5+ cells in 25 CLL samples. Positive cases for ZAP70 and CD72 were defined using a cut-off of 35% and 40% positive cells, respectively. Real time PCR was used to quantify the expression levels of 3 genes related to proliferation and survival, RELB, Beta-Catenin (CTNNB1) and AKT1, on 16 CD19+ enriched (purity > 90%) CLL samples. Results: Samples were classified as 11 ZAP70+ and 14 ZAP70−. Median percentage of CD72+ cells in ZAP70+ was significantly higher than for ZAP70− cases (82% compared to 39%, respectively, P=0.0029). Furthermore, percentages of CD72 and ZAP70 were positively correlated (r=0.5930 and P=0.0009). Interestingly, ZAP70+ cases were restricted to CD72+ cases (n=11, CD72+ZAP70+ [+/+]), whereas six CD72+ cases were ZAP70− (ZAP70−CD72+ [−/+]). Finally, there were 8 cases CD72−ZAP70− [−/−]. No differences among these 3 groups were observed in regard to laboratory parameters (white blood cells, total lymphocytes, lymphocyte percentage, haemoglobin, haematocrit and platelet number). Despite the reduced number of samples analysed (6 +/+, 6 −/− and 4 −/+), transcripts for RELB (P<0.05), CTNNB1 (P<0.05), and AKT1(P=0.057) were expressed at higher levels in ZAP70+CD72+ than in ZAP70−CD72+ samples. Additionally, the transcripts were expressed at higher levels in ZAP70−CD72− than in ZAP70−CD72+ samples, and this difference was statistically significant (P<0.05) for CTNB1 and AKT1, but not for RELB (P=0.054). Conclusion: Our data indicate that higher percentages of ZAP70+ cells are associated with higher expression levels of transcripts related to proliferation and survival of CLL B-cells. In the absence of ZAP70 expression, CD72 may act as a negative regulator of the BCR pathway, as indicated by the lowest levels of transcripts on ZAP70−CD72+ cases.

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1069-1069
Author(s):  
Iris Gehrke ◽  
Julian Paesler ◽  
Rajesh Kumar Gandhirajan ◽  
Regina Razavi ◽  
Alexandra Filipovich ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (CLL) is characterized by an accumulation of mature, but incompetent B-cells due to a decrease of apoptosis rather than an increase in proliferation. Vascular endothelial growth factor (VEGF) has been suggested to play an important role in this so called apoptotic block. However, so far little is understood whether VEGF is acting mainly as a microenvironmental stimulus and/or whether CLL cells themselves contribute to the enhanced apoptotic resistance by maintaining an autocrine VEGF loop. Moreover, it is unknown by which mechanisms VEGF prevents apoptosis and whether this can be circumvented by inhibition of VEGF signaling. By quantitative real time PCR we found no significant difference in mRNA VEGF levels in B-cells from CLL patients and healthy donors after isolation from blood. In contrast, ELISA revealed clearly increased levels of secreted VEGF in plasma of CLL patients and in the supernatant under culture conditions compared to healthy individuals. In addition, we found the VEGF receptor 2 (VEGFR2), which is existent in CLL and healthy B-cells, in a phosphorylated, hence activated state, to a significantly higher extent in CLL cells as assessed by intracellular phospho flow cytometry. In conclusion, despite its expression in healthy B-cells VEGF does not seem to be secreted and therefore, no VEGF receptor phosphorylation takes place. Whereas CLL cells exhibit a long life span in vivo, they die rapidly in vitro, suggesting major survival factors being existent in the CLL cells microenvironment. We found levels of secreted VEGF in supernatant decreasing with time in culture, going along with decreasing levels of phosphorylated VEGFR2 and increasing cell death as assessed by Annexin V-FITC/PI staining. This further supports the role of VEGF in CLL cell survival. Coculturing primary CLL cells with the bone marrow stromal derived cell line HS5 dramatically increased VEGF transcription and secretion and improved cell survival. Hence, VEGF expression in CLL cells is not only mediated by autocrine, but also paracrine stimuli involving bone marrow stromal. Knocking down VEGF in HS5 cells and subsequent coculture with CLL cells might prove the major role of VEGF in this survival supporting coculture setting. Besides coculturing also supplement of culture medium with recombinant human VEGF (rhVEGF) increased survival, but to a lesser extent than coculture, indicating a direct cell-cell interaction as advantageous. Furthermore, we found a downregulation of anti apoptotic proteins, such as X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia 1 (MCL1) and BclXL upon VEGF stimulation. Also cyclinD1 was upregulated as seen by immunoblotting. We further tried to discover the underlying mechanism of how VEGF mediates its pro survival effect and found STAT3 to become phosphorylated on tyrosine 705 upon VEGF stimulation. In CLL STAT3 is known to be constitutively phosphorylated on serine 727. This phosphorylation is not sufficient to induce target gene expression though. We could show that Y705 phosphorylation of STAT3 is responsible for upregulation of anti apoptotic BCLXL and cyclinD1. A PCR array detecting mRNA levels of 84 transcription factors in untreated and VEGF stimulated CLL cells shall provide more information about mechanistical details how VEGF mediates it pro survival effect. Since VEGF seems to be a major player in CLL cell survival it might be a suitable target to overcome the apoptotic block. In first experiments we found an induction of apoptosis after neutralization of VEGF or inhibition of the VEGF receptor. This additionally highlights the severe importance of VEGF in the apoptotic block in CLL cells. Therefore, VEGF might serve as an excellent therapeutic target in CLL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3134-3134
Author(s):  
Carol Moreno ◽  
Rajendra Damle ◽  
Sonia Jansa ◽  
Gerardo Ferrer ◽  
Pau Abrisqueta ◽  
...  

Abstract The Fcgamma receptors (FcγRs) are a family of molecules that modulate immune responses. FcγRIIb is an inhibitory FcγR that bears immunoreceptor tyrosine-based inhibitory motifs which transduce inhibitory signals on coligation with the surface membrane Ig of the B-cell antigen receptor (BCR). The role of FcγRIIb in controlling B cell activation through inhibition of BCR signaling has been extensively studied in animal models. Nevertheless, data on FcγRIIb are scant in human normal and neoplastic B cells, this being due to the lack of a specific antibody for human FcγRIIb. Consequently, there is little information on this receptor in chronic lymphocytic leukemia (CLL). Considering the activated nature of CLL cells and the central role of the BCR in the biology of the disease, studies of FcγRs are warranted. We used a novel specific mAb directly conjugated with Alexa 488 fluorophore that solely reacts with the human FcγRIIb (MacroGenics, Inc.) to investigate the receptors expression on CLL and normal human B cells. The study population included 84 patients with CLL and 24 age- and sex-matched controls. FcγRIIb expression was assessed as the mean fluorescence intensity (MFI) of surface membrane staining. In CLL cells, FcγRIIb was measured on CD19+CD5+ cells in combination with CD38, CD49d or CD69. Normal B cells were immunostained for CD19, CD5, IgD and CD38 expression and B cell subsets: naïve (IgD+CD38−), activated (IgD+CD38+) and memory B cells (IgD−CD38−) were studied for their relative expression of FcγRIIb. FcγRIIb expression was found significantly higher in naïve B cells compared to activated and memory B cells [median MFI: 17420 (11960–21180) vs. 11.140 (7899–16970) and 11.830 (6984–17100); p<0.001]. Significant differences were also observed between CD5− and CD5+ normal B cells. In contrast, FcγRIIb expression was lower in CLL cells than in CD5+ and CD5− normal B lymphocytes [median MFI: 6901(1034–42600), 10180 (5856–14820) and 12120 (7776–16040); p<0.05)]. Interestingly, FcγRIIb expression was variable within individual CLL clones, this being higher in CD38+ and CD49d+ cells than in CD38− and CD49d− cells (p<0.05). Furthermore, the highest density of FcγRIIb was observed on those cells which coexpressed CD38 and CD49d. In contrast, no significant differences were observed between FcγRIIb and the expression of the activation antigen CD69. Although CD69 and CD38 expression was significantly higher on unmutated IGHV cases, no correlation was found between FcγRIIb levels and IGHV mutational status. Similarly, there was no correlation between FcγRIIb and other poor prognostic variables such as ZAP-70 (≥20%), CD38 (≥ 30%) or high risk cytogenetics. Nevertheless, cases with ≥ 30% CD49d+ cells had higher FcγRIIb expression than those with <30% CD49d+ cells (p=0.006). The findings presented in this study suggest a hierarchy of FcγRIIb expression in normal B-cells, CLL cells and their subpopulations: circulating normal CD5− B cells > circulating normal CD5+ B cells > circulating CD5+ CLL B cells. In addition, although FcγRIIb is present on all normal B cell subsets its expression is higher in naïve B cells. Furthermore, in CLL FcγRIIb density is greater in CD38+ and CD49d+ cells within the clone. Although CD49d and FcγRIIb on CLL clones is linked in a direct manner, there is no relationship with FcγRIIb density and IGHV mutations, ZAP-70, CD38 and unfavorable cytogenetic markers. Finally, the relationship between FcγRIIb expression on CLL cells and functional responses to BCR and other receptor-mediated signals deserve further investigation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5278-5278
Author(s):  
Agnieszka Bojarska-Junak ◽  
Iwona Hus ◽  
Anna Dmoszynska ◽  
Jacek Rolinski

Abstract Chronic lymphocytic leukemia (CLL) is characterized by a very heterogeneous clinical course, which is slow and indolent in most of the patients, however some patient experience rapid disease progression and anticancer therapy is required shortly after the diagnosis. Many issues in CLL development and progression are still unclear. The functional consequences of CD1d expression on tumour cells are not well understood. However, increasing evidence suggests that they may affect iNKT cells.The role of CD1d expression in CLL immunopathogenesis remains undefined. In this study, we investigated the potential role of CD1d in CLL by analyzing the level of CD1d expression on leukemic B cells in peripheral blood of120 patients and assessed its correlation with prognostic markers such as ZAP-70 and CD38 expression, Rai stages and unfavourable cytogenetic changes.Measuring CD1d expression by flow cytometry and qRT-PCR, we showed lower CD1d molecule and CD1d mRNA expression in B cells of CLL patients than of healthy controls. The frequency of CD1d+/CD19+ cells, CD1d staining intensity and CD1d transcript levels increased with the disease stage. CD1d expression was positively associated with ZAP-70 and CD38 expressions as well as with unfavourable cytogenetic changes (17p deletion, 11q deletio),. We established the relationship between high CD1d expression and shorter time to treatment and overall survival. The percentage of CD1d+/CD19+cells inversely correlated with the percentage of iNKT cells. iNKT cells ζ-chain expression was downregulated in the high-CD1d group.These results suggest that high CD1d expression is associated with poor prognosis of CLL and might be involved in disease progression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 668-668
Author(s):  
Phuong-Hien Nguyen ◽  
Nina Reinart ◽  
Michael Hallek

Abstract The Src family kinase Lyn is predominantly expressed in B cells and plays a central role in initiating B cell receptor (BCR) signaling. Lyn is associated with BCR complexes and is renowned for its role in B cell activation and proliferation. Active Lyn contributes to positive regulation of signalling through tyrosine phosphorylation of components of the BCR. Intriguingly, Lyn was also shown as a negative regulator of BCR signal transduction. Lyn plays an essential role in negative regulation of signalling through its unique ability to phosphorylate immunoreceptor tyrosine based inhibition motifs (ITIM) in inhibitory cell surface receptors. ITIM phosphorylation induces the recruitment of inhibitory phosphatases such as SHP-1/2 and SHIP-1, which attenuate BCR signalling. Lyn-deficient mice have reduced number of B cells and increased numbers of myeloid progenitors. It was reported that expression and activity of Lyn in human chronic lymphocytic leukemia (CLL) is elevated compared to healthy B cells. Besides, higher levels of Lyn are associated with a shorter treatment-free survival of CLL patients. This rises up a hypothesis about Lyn’s significant role in B cell tumorigenesis, malignant transformation of B cells, and the balance between myeloid cells and B lymphocytes. We generated Eµ-TCL1 transgenic LYN-deficient mice (TCL1+/wtLYN-/-) and monitored them in order to identify the population of malignant B cells and to characterize the development of malignant cells in these mice in comparison with Eµ-TCL1 transgenic mice (TCL1+/wtLYNwt/wt). In comparison to TCL1+/wtLYNwt/wt mice, TCL1+/wtLYN-/- mice show a significantly reduced number of malignant B cells in the peripheral blood, as well as a reduced leukocyte count. Besides, TCL1+/wtLYN-/- mice have significantly decreased infiltration of malignant B cells in lymphoid tissues such as spleen, liver, lymph node and bone marrow. This result is also resembled in a hepato-splenomegaly in the TCL1+/wtLYNwt/wt mice. These mice develop severe splenomegaly and hepatomegaly due to infiltration of malignant cells, while TCL1+/wtLYN-/- mice do not develop hepatomegaly. The non-transgenic LYN-/- control mice develop splenomegaly due to infiltration of myeloid cells. Although TCL1+/wtLYN-/- mice have hindered development of TCL1-induced CLL, preliminary data suggest it is not only due to LYN-deficiency in B cell compartment of these mice. Indeed, B cell of TCL1+/wtLYN-/- mice show enhanced proliferation and better survival ex vivo compared to TCL1+/wtLYNwt/wt mice. Notably, TCL1+/wtLYN-/- mice developed a skewed microenvironment which might contribute to CLL down regulation. LYN-/- microenvironment, particularly in aged mice, does not support engraftment of TCL1-induced leukemic B cell as well as LYNwt/wt mice in our transplantation model. These results point to a complex regulation of Lyn signalling in CLL involving not only leukemic cells but also cells of the micromillieu, that needs further investigation. Disclosures: No relevant conflicts of interest to declare.


Haematologica ◽  
2007 ◽  
Vol 92 (3) ◽  
pp. 349-356 ◽  
Author(s):  
E. Ocana ◽  
L. Delgado-Perez ◽  
A. Campos-Caro ◽  
J. Munoz ◽  
A. Paz ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2328-2334 ◽  
Author(s):  
Mı́riam Molina-Arcas ◽  
Beatriz Bellosillo ◽  
F. Javier Casado ◽  
Emili Montserrat ◽  
Joan Gil ◽  
...  

Nucleoside derivatives are currently used in the treatment of hematologic malignancies. Although intracellular events involved in the pharmacologic action of these compounds have been extensively studied, the role of plasma membrane transporters in nucleoside-derived drug bioavailability and action in leukemia cells has not been comprehensively addressed. We have monitored the amounts of mRNA for the 5 nucleoside transporter isoforms cloned so far (CNT1, CNT2, CNT3, ENT1, and ENT2) in several human cell types and in normal human leukocytes. We then examined the expression patterns of these plasma membrane proteins in patients with chronic lymphocytic leukemia (CLL) and correlated them with in vitro fludarabine cytotoxicity. Despite a huge individual variability in the mRNA amounts for every transporter gene expressed in CLL cells (CNT2, CNT3, ENT1, and ENT2), no relationship between mRNA levels and in vitro fludarabine cytotoxicity was observed. Fludarabine accumulation in CLL cells was mostly, if not exclusively, mediated by ENT-type transporters whose biologic activity was clearly correlated with fludarabine cytotoxicity, which reveals a role of ENT-mediated uptake in drug responsiveness in patients with CLL.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1546-1546
Author(s):  
Zijuan Wu ◽  
LEI Fan ◽  
Luqiao Wang ◽  
Hanning Tang ◽  
Yi Miao ◽  
...  

Abstract Objective: Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder that mainly affects the elderly and is characterized by the expansion of small mature B-cells. New targeted drugs, such as the BTK inhibitor ibrutinib, have greatly improved patient survival but have also posed the challenge of drug resistance. The three-dimensional (3D) spatial structure of chromatin is highly dynamic and varies greatly between cell types and developmental stages, with the maintenance of chromatin homeostasis being of major significance in disease prevention. Accumulating evidence has suggested that changes in 3D genomic structures play an important role in cell development and differentiation, disease progression, as well as drug resistance. Nevertheless, the characteristics and functional significance of chromatin conformation in the resistance of CLL to ibrutinib remain unclear. In this study, we aimed to investigate the mechanism underlying ibrutinib resistance through multi-omics profiling, including the study of chromatin conformation. Thus, we would be able to demonstrate the importance of chromatin spatial organization in CLL and highlight the oncogenic factors contributing to CLL development and mediating ibrutinib resistance. Methods: An ibrutinib-resistant cell line was established by exposing cells to increasing doses of ibrutinib. High-throughput chromosome conformation capture (Hi-C), assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), bulk RNA sequencing (RNA-seq), and Tandem Mass Tag (TMT) were performed to explore differences between ibrutinib-resistant and parental cells. Peripheral blood mononuclear cells (PBMCs) from 53 CLL patients were collected for RNA-seq. Mitochondrial respiration and glycolysis were assessed via Seahorse analysis. The growth-inhibitory effects of tested drugs were evaluated via a CCK8 assay, and the combination index (CI), indicating synergy, was calculated using CompuSyn software. Apoptosis was detected via annexin V staining. Results: Between ibrutinib-resistant and parental cells changes in some chromosomes, including chr11 were observed (Figure 1A). p21-activated kinase 1 (PAK1), which is located on chr11 and frequently overexpressed or excessively activated in almost all cancer types and involved in almost every stage of cancer progression, was first explored for its role in CLL progression and drug resistance. The oncogene PAK1 was observed locate in a region where B-to-A compartment switching occurred (Figure 1B). Consistent with the results of ATAC-seq, RNA-seq, and TMT, Hi-C analysis revealed a transcriptional upregulation of PAK1 in ibrutinib-resistant CLL cells (Figure 1C). Functional analysis demonstrated that PAK1 overexpression significantly promoted cell proliferation, while knockdown markedly suppressed cell viability (Figure 1D). Cell viability assays indicated that the depletion of PAK1 increased ibrutinib sensitivity (Figure 1E). In addition, PAK1 positively regulates glycolysis and oxidative phosphorylation in CLL cells (Figure 1F and G). To verify the results of sequencing and further explore the role of PAK1 in CLL, B-cells from healthy volunteers and PBMCs from CLL patients were collected. The level of PAK1 mRNA expression was significantly higher in CLL primary cells than in B-cells from healthy volunteers (Figure 1H). Kaplan-Meier survival analysis of qRT-PCR data confirmed that patients with high PAK1 expression had a significantly lower OS (Figure 1I). IPA-3, the small molecular inhibitor of PAK1 suppressed the proliferation of ibrutinib-resistant and parental CLL cells in a dose-dependent manner. The combination of IPA-3 and ibrutinib exerted potent cell growth inhibition (Figure 1J), and the combination index (CI) calculated using the CompuSyn software confirmed the synergistic effect (CI<1) of this combinatorial therapy (Figure 1K). Conclusions: In the current study, we have provided a genome-wide view of alterations in 3D chromatin organization between ibrutinib-resistant and parental CLL cells and confirmed the oncogenic role of PAK1 in CLL. Most importantly, our research provides promising therapeutic targets for overcoming ibrutinib resistance. In particular, the treatment of CLL patients with a combination of IPA-3 and ibrutinib may improve clinical outcomes. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Haematologica ◽  
2022 ◽  
Author(s):  
Vera Kristin Schmid ◽  
Ahmad Khadour ◽  
Nabil Ahmed ◽  
Carolin Brandl ◽  
Lars Nitschke ◽  
...  

Chronic lymphocytic leukemia (CLL) is a frequent lymphoproliferative disorder of B cells. Although inhibitors targeting signal proteins involved in B cell antigen receptor (BCR) signaling constitute an important part of the current therapeutic protocols for CLL patients, the exact role of BCR signaling, as compared to genetic aberration, in the development and progression of CLL is controversial. To investigate whether BCR expression per se is pivotal for the development and maintenance of CLL B cells, we used the TCL1 mouse model. By ablating the BCR in CLL cells from TCL1 transgenic mice, we show that CLL cells cannot survive without BCR signaling and are lost within eight weeks in diseased mice. Furthermore, we tested whether mutations augmenting B cell signaling influence the course of CLL development and its severity. The Phosphatidylinositol-3-kinase (PI3K) signaling pathway is an integral part of the BCR signaling machinery and its activity is indispensable for B cell survival. It is negatively regulated by the lipid phosphatase PTEN, whose loss mimics PI3K pathway activation. Herein, we show that PTEN has a key regulatory function in the development of CLL, as deletion of the Pten gene resulted in greatly accelerated onset of the disease. By contrast, deletion of the gene TP53, which encodes the tumor suppressor p53 and is highly mutated in CLL, did not accelerate disease development, confirming that development of CLL was specifically triggered by augmented PI3K activity through loss of PTEN and suggesting that CLL driver consequences most likely affect BCR signaling. Moreover, we could show that in human CLL patient samples, 64% and 81% of CLL patients with a mutated and unmutated IgH VH, respectively, show downregulated PTEN protein expression in CLL B cells if compared to healthy donor B cells. Importantly, we found that B cells derived from CLL patients had higher expression levels of the miRNA-21 and miRNA-29, which suppresses PTEN translation, compared to healthy donors. The high levels of miRNA-29 might be induced by increased PAX5 expression of the B-CLL cells. We hypothesize that downregulation of PTEN by increased expression levels of miR-21, PAX5 and miR-29 could be a novel mechanism of CLL tumorigenesis that is not established yet. Together, our study demonstrates the pivotal role for BCR signaling in CLL development and deepens our understanding of the molecular mechanisms underlying the genesis of CLL and for the development of new treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document