Chronic Lymphocytic Leukemia (CLL) Cells Require Microenvironmental Stimuli to Resist Apoptosis through Activation of STAT3 Mediated by VEGF.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1069-1069
Author(s):  
Iris Gehrke ◽  
Julian Paesler ◽  
Rajesh Kumar Gandhirajan ◽  
Regina Razavi ◽  
Alexandra Filipovich ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (CLL) is characterized by an accumulation of mature, but incompetent B-cells due to a decrease of apoptosis rather than an increase in proliferation. Vascular endothelial growth factor (VEGF) has been suggested to play an important role in this so called apoptotic block. However, so far little is understood whether VEGF is acting mainly as a microenvironmental stimulus and/or whether CLL cells themselves contribute to the enhanced apoptotic resistance by maintaining an autocrine VEGF loop. Moreover, it is unknown by which mechanisms VEGF prevents apoptosis and whether this can be circumvented by inhibition of VEGF signaling. By quantitative real time PCR we found no significant difference in mRNA VEGF levels in B-cells from CLL patients and healthy donors after isolation from blood. In contrast, ELISA revealed clearly increased levels of secreted VEGF in plasma of CLL patients and in the supernatant under culture conditions compared to healthy individuals. In addition, we found the VEGF receptor 2 (VEGFR2), which is existent in CLL and healthy B-cells, in a phosphorylated, hence activated state, to a significantly higher extent in CLL cells as assessed by intracellular phospho flow cytometry. In conclusion, despite its expression in healthy B-cells VEGF does not seem to be secreted and therefore, no VEGF receptor phosphorylation takes place. Whereas CLL cells exhibit a long life span in vivo, they die rapidly in vitro, suggesting major survival factors being existent in the CLL cells microenvironment. We found levels of secreted VEGF in supernatant decreasing with time in culture, going along with decreasing levels of phosphorylated VEGFR2 and increasing cell death as assessed by Annexin V-FITC/PI staining. This further supports the role of VEGF in CLL cell survival. Coculturing primary CLL cells with the bone marrow stromal derived cell line HS5 dramatically increased VEGF transcription and secretion and improved cell survival. Hence, VEGF expression in CLL cells is not only mediated by autocrine, but also paracrine stimuli involving bone marrow stromal. Knocking down VEGF in HS5 cells and subsequent coculture with CLL cells might prove the major role of VEGF in this survival supporting coculture setting. Besides coculturing also supplement of culture medium with recombinant human VEGF (rhVEGF) increased survival, but to a lesser extent than coculture, indicating a direct cell-cell interaction as advantageous. Furthermore, we found a downregulation of anti apoptotic proteins, such as X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia 1 (MCL1) and BclXL upon VEGF stimulation. Also cyclinD1 was upregulated as seen by immunoblotting. We further tried to discover the underlying mechanism of how VEGF mediates its pro survival effect and found STAT3 to become phosphorylated on tyrosine 705 upon VEGF stimulation. In CLL STAT3 is known to be constitutively phosphorylated on serine 727. This phosphorylation is not sufficient to induce target gene expression though. We could show that Y705 phosphorylation of STAT3 is responsible for upregulation of anti apoptotic BCLXL and cyclinD1. A PCR array detecting mRNA levels of 84 transcription factors in untreated and VEGF stimulated CLL cells shall provide more information about mechanistical details how VEGF mediates it pro survival effect. Since VEGF seems to be a major player in CLL cell survival it might be a suitable target to overcome the apoptotic block. In first experiments we found an induction of apoptosis after neutralization of VEGF or inhibition of the VEGF receptor. This additionally highlights the severe importance of VEGF in the apoptotic block in CLL cells. Therefore, VEGF might serve as an excellent therapeutic target in CLL.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3110-3110
Author(s):  
Stamatia Laidou ◽  
Stavroula Ntoufa ◽  
Sofia Papanikolaou ◽  
Konstantia Kotta ◽  
Maria Koutroumani ◽  
...  

Abstract Recent evidence indicates that TAp63, the prevalent isoform of TP63 in Chronic Lymphocytic Leukemia (CLL), is implicated in disease pathogenesis. In CLL, TAp63 expression, modulated by both immune signaling and epigenetic modifications, promotes leukemic cell survival and homing to the bone marrow. In activated normal B cells, the TAp63 transcription factor binds the BCL2 gene, participating in an anti-apoptotic pathway (axis NF-κB/TAp63/BCL2) augmenting cell survival. In this study, we investigated the expression of TAp63 in a large cohort of CLL cases and its potential fluctuation during disease progression. Additionally, in order to further understand the pro-survival role of TAp63 in CLL, we interrogated at the molecular level the interplay betweenΤAp63 and BCL2. Initially, using RT-qPCR we quantified TAp63 mRNA expression in 166 CLL patients, consisting of 89 with unmutated IGHV genes (U-CLL) and 77 with mutated IGHV genes (M-CLL), prior to administration of treatment. Significantly higher TAp63 mRNA levels were observed in U-CLL vs M-CLL (FD=13.83, p<0.0001). However, outliers were identified in both subgroups, prompting us to re-classify all cases into TAp63high and TAp63low subgroups using ROC curve and Youden index statistical procedures. TAp63high patients displayed significantly shorter time-to-first-treatment (TTFT) (TAp63highmedian TTFT: 1.58 years; TAp63lowmedian TTFT: 4.07 years; p=0.03) and shorter overall survival (OS) (TAp63highmedian OS: 7.825 years; TAp63lowmedian OS: not yet reached; p=0.046). Next, we analyzed TAp63 mRNA expression in longitudinal samples of 25 U-CLL cases treated with either FCR or rituximab-chlorambucil. In each case, samples were collected at three 'landmarks'; diagnosis, first progressionand first relapse. Expression analysis by RT-qPCR showed that TAp63 levels significantly increased at disease relapse compared to diagnosis (FD=3.47, p=0.02). We subsequently investigated links between TAp63 and BCL2 by measuring BCL2 mRNA levels in 56 U-CLL cases from the present cohort and found statistically significant correlation with the corresponding TAp63 mRNA levels (spearman rho=0.31, p=0.01). To validate this observation, we undertook functional studies in the MEC1 CLL cell line. Considering that MEC1 cells express high TAp63 mRNA levels, we generated a stable MEC1 cell line to inducibly downregulate TAp63, using CRISPR/dCas9-KRAB upon treatment with doxycycline (Dox). We used 2 different guide RNAs (sgRNAs; sgRNA1, sgRNA2) targeting 2 distinct regions of the endogenous TAp63 promoter. After 5 days of induction, the expression levels of both TAp63 and BCL2 were quantified by one step RT-qPCR in Tet-on-dCas9-KRAB-sgRNA-TAp63 MEC1 cells. Inducible downregulation of TAp63 expression (gRNA1: FD=1.7, gRNA2: FD=1.53) resulted in downregulation of BCL2 expression (gRNA1: FD=1.34, gRNA2: FD=1.12) with strong correlation (rho=0.97, p<0.0001) between TP63 and BCL2 mRNA levels. Furthermore, we also observed correlation between TAp63 and BCL2 protein expression in primary cells of one representative TP63high CLL case (rho=0.94, p=0.01), in which TAp63 was silenced by RNA interference (RNAi) with 3 different siRNAs. Prompted by these results, we additionally assessed ex vivo the effect of the BCL2 inhibitor Venetoclax in primary CLL cells of both TAp63high (n=8) and TAp63low (n=6) cases. Cell viability was measured by flow cytometry at 24 and 48 hours after treatment. TAp63high cases were more resistant to treatment with Venetoclax as they showed no statistically significant reduction in cell viability compared to the respective (DMSO-treated) controls, in contrast to TAp63low cases (24h: FD=3.63, p=0.004; 48h: FD=7.17, p=0.005). In conclusion, we provide evidence suggesting that up-regulated TAp63 expression represents a novel resistance mechanism to chemoimmunotherapy in CLL. The pro-survival role of TAp63 is supported by its strong association with BCL2. Indeed, based on the present findings, TAp63 appears to act as a positive modulator of BCL2 in CLL cells, rendering them less responsive to apoptosis induction with the BCL2 inhibitor Venetoclax. Disclosures Hadzidimitriou: Abbvie: Research Funding; Gilead: Research Funding; Janssen: Honoraria, Research Funding. Stamatopoulos:Abbvie: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Janssen: Honoraria, Research Funding.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


2017 ◽  
Vol 39 (2) ◽  
pp. 141-144
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O E Ruzhinska ◽  
I M Skorokhod ◽  
O G Alkhimova

Aim: The genetic mechanisms of resistance to chemotherapy in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (B-CLL/SLL) are not clear. We aimed to determine the peculiarities of abnormal karyotype formation in bone marrow (BM) cells and peripheral blood (PB) blast transformed B-cells in relapse of B-CLL/SLL. Materials and Methods: Cytogenetic GTG banding technique and molecular cytogenetic in interphase cells (i-FISH) studies of BM cells and PB blast transformed B-lymphocytes were performed in 14 patients (10 males and 4 females) with B-CLL/SLL. Results: The results of karyotyping BM and PB cells revealed the heterogeneity of cytogenetic abnormalities in combined single nosological group of B-CLL/SLL. In PB B-cells, chromosome abnormalities related to a poor prognosis group were registered 2.5 times more often than in BM cells. Additional near tetraploid clones that occurred in 57.1% cases were the peculiar feature of BM cell karyotypes. Chromosomal rearrangements characteristic of the group of adverse cytogenetic prognosis were revealed in all cases from which in 2 cases by karyotyping BM cells, in 6 cases in PB B-cells and in 8 cases by the i-FISH method in BM cells, i.e. their detection frequency was 3 times higher in PB B-cells and 4 times higher when analyzing by i-FISH in BM cells. Conclusions: Mismatch in abnormal karyotypes in BM and PB B-cells by the presence of quantitative and structural chromosomal rearrangements may be indicative of simultaneous and independent processes of abnormal clone formation in the lymph nodes and BM hematopoietic cells. Accumulation the information about previously unidentified chromosomal rearrangements in relapse of the disease may help to understand the ways of resistance formation to chemotherapy.


2000 ◽  
Vol 124 (9) ◽  
pp. 1361-1363
Author(s):  
Anwarul Islam ◽  
Adrian O. Vladutiu ◽  
Theresa Donahue ◽  
Selina Akhter ◽  
Amy M. Sands ◽  
...  

Abstract The expression of CD8, a restricted T-cell antigen, on B cells in B chronic lymphocytic leukemia is rare, and its significance, if any, remains unknown. We report herein a patient with B chronic lymphocytic leukemia in whom CD8 was strongly expressed on all B cells, both in the bone marrow and peripheral blood. The patient required no therapy for 6 years after being diagnosed as having B chronic lymphocytic leukemia. Then, when the disease progressed, he was treated with conventional doses of fludarabine phosphate (25 mg/m2 daily for 5 days), but unlike other patients with B chronic lymphocytic leukemia he tolerated this therapy poorly. He received a total of only 4 series of fludarabine therapy, and following each course of treatment, he developed considerable myelosuppression. After the fourth course of therapy, his bone marrow failed to show any evidence of regeneration, and he died as a result of intercurrent respiratory tract infection 1 month after his last dose of fludarabine was given.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2833-2841 ◽  
Author(s):  
Lyda M. Osorio ◽  
Angelina De Santiago ◽  
Miguel Aguilar-SantelisesHå ◽  
kan Mellstedt ◽  
Mikael Jondal

Abstract CD6 and CD5 belong to a scavenger-receptor cysteine-rich (SRCR) super family of membrane glycoproteins that are expressed on chronic lymphocytic leukemia B (B-CLL) cells, normal T cells, and a small subset of normal B cells. CD6 configures in the membrane in relation to the cellular activation level and can act as a coreceptor for T-cell activation. We have examined a group of progressive and nonprogressive B-CLL cells. Most B-CLL cells were positive for CD6 and the expression of CD6 was increased after activation with Staphylococcus aureus Cowan I plus interleukin-2 or 12-O-tetradecanoylphorbol 13-acetate, although anti-CD6 antibodies did not increase proliferative responses to these stimuli. However, anti-CD6 stimulation was found to protect against anti-IgM–induced apoptosis in B-CLL. baxα upregulation and bcl-2 downregulation were found in anti-IgM– and glucocorticoid (GCC)-induced apoptotic cells, respectively. Furthermore, CD6 cross-linking downregulated baxα mRNA levels in anti-IgM–treated cells, resulting in an increased bcl-2/baxα ratio. CD6 activation also prevented bcl-2 mRNA downregulation and apoptosis induced by GCC in one of six GCC-sensitive patients. These data suggest that an interaction between CD6 and its ligand might contribute to B-CLL survival through the modulation of the Bcl-2/Bax ratio.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2965-2965 ◽  
Author(s):  
Anu Cherukuri ◽  
Edward Kadel ◽  
Sang H. Lee ◽  
Cheryl Goldbeck ◽  
Carla Heise ◽  
...  

Abstract CD40 and CD40 ligand (CD40L) interaction is a key regulator of B-chronic lymphocytic leukemia (CLL) survival. CD40 activation leads to binding with tumor necrosis factor receptor-associated factors (TRAFs) and the subsequent activation of multiple downstream signaling pathways involved in cellular proliferation and survival. We have generated a novel fully human IgG1 anti-CD40 antagonistic monoclonal antibody, CHIR-12.12, using XenoMouse® mice (Abgenix, Inc). CHIR-12.12 blocks CD40L binding to CD40 and inhibits CD40L-induced proliferation/survival of normal human B cells, primary CLL cells, and primary non-Hodgkin’s lymphoma (NHL) cells. We have also demonstrated that it has highly potent antibody-dependent cellular cytotoxicity (ADCC) against primary CLL and non-Hodgkin’s lymphoma cells. We have now investigated its effects on primary CLL cell survival. Soluble human CD40L prolongs primary CLL cell survival in culture, and treatment with CHIR-12.12 inhibits this survival when measured 48–72 hours after addition of CHIR-12.12. CD40L-mediated survival is associated with activation and phosphorylation of Akt, p38 MAPK, ERK, and IkB kinases a and b. Additionally, the anti-apoptotic proteins Mcl-1, Bcl-xl, and XIAP are induced, and markers of apoptosis (cleaved PARP and Caspase-3) are reduced. In contrast, CHIR-12.12 treatment of CD40L-stimulated primary CLL cells ex vivo inhibited downstream phosphorylation of Akt, p38 MAPK, ERK, and IkB kinases (IKK) a and b. Additionally, CHIR-12.12 treatment resulted in induction of cleaved caspase-3 and PARP, and reduction of XIAP, Mcl-1, and Bcl-xl expression, ultimately leading to CLL cell apoptosis. These results demonstrate that CHIR-12.12 inhibits CD40L-mediated signaling pathways and cell survival and could be a potential therapeutic treatment for CLL. CHIR-12.12 is currently in a Phase I clinical study for CLL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3134-3134
Author(s):  
Carol Moreno ◽  
Rajendra Damle ◽  
Sonia Jansa ◽  
Gerardo Ferrer ◽  
Pau Abrisqueta ◽  
...  

Abstract The Fcgamma receptors (FcγRs) are a family of molecules that modulate immune responses. FcγRIIb is an inhibitory FcγR that bears immunoreceptor tyrosine-based inhibitory motifs which transduce inhibitory signals on coligation with the surface membrane Ig of the B-cell antigen receptor (BCR). The role of FcγRIIb in controlling B cell activation through inhibition of BCR signaling has been extensively studied in animal models. Nevertheless, data on FcγRIIb are scant in human normal and neoplastic B cells, this being due to the lack of a specific antibody for human FcγRIIb. Consequently, there is little information on this receptor in chronic lymphocytic leukemia (CLL). Considering the activated nature of CLL cells and the central role of the BCR in the biology of the disease, studies of FcγRs are warranted. We used a novel specific mAb directly conjugated with Alexa 488 fluorophore that solely reacts with the human FcγRIIb (MacroGenics, Inc.) to investigate the receptors expression on CLL and normal human B cells. The study population included 84 patients with CLL and 24 age- and sex-matched controls. FcγRIIb expression was assessed as the mean fluorescence intensity (MFI) of surface membrane staining. In CLL cells, FcγRIIb was measured on CD19+CD5+ cells in combination with CD38, CD49d or CD69. Normal B cells were immunostained for CD19, CD5, IgD and CD38 expression and B cell subsets: naïve (IgD+CD38−), activated (IgD+CD38+) and memory B cells (IgD−CD38−) were studied for their relative expression of FcγRIIb. FcγRIIb expression was found significantly higher in naïve B cells compared to activated and memory B cells [median MFI: 17420 (11960–21180) vs. 11.140 (7899–16970) and 11.830 (6984–17100); p&lt;0.001]. Significant differences were also observed between CD5− and CD5+ normal B cells. In contrast, FcγRIIb expression was lower in CLL cells than in CD5+ and CD5− normal B lymphocytes [median MFI: 6901(1034–42600), 10180 (5856–14820) and 12120 (7776–16040); p&lt;0.05)]. Interestingly, FcγRIIb expression was variable within individual CLL clones, this being higher in CD38+ and CD49d+ cells than in CD38− and CD49d− cells (p&lt;0.05). Furthermore, the highest density of FcγRIIb was observed on those cells which coexpressed CD38 and CD49d. In contrast, no significant differences were observed between FcγRIIb and the expression of the activation antigen CD69. Although CD69 and CD38 expression was significantly higher on unmutated IGHV cases, no correlation was found between FcγRIIb levels and IGHV mutational status. Similarly, there was no correlation between FcγRIIb and other poor prognostic variables such as ZAP-70 (≥20%), CD38 (≥ 30%) or high risk cytogenetics. Nevertheless, cases with ≥ 30% CD49d+ cells had higher FcγRIIb expression than those with &lt;30% CD49d+ cells (p=0.006). The findings presented in this study suggest a hierarchy of FcγRIIb expression in normal B-cells, CLL cells and their subpopulations: circulating normal CD5− B cells &gt; circulating normal CD5+ B cells &gt; circulating CD5+ CLL B cells. In addition, although FcγRIIb is present on all normal B cell subsets its expression is higher in naïve B cells. Furthermore, in CLL FcγRIIb density is greater in CD38+ and CD49d+ cells within the clone. Although CD49d and FcγRIIb on CLL clones is linked in a direct manner, there is no relationship with FcγRIIb density and IGHV mutations, ZAP-70, CD38 and unfavorable cytogenetic markers. Finally, the relationship between FcγRIIb expression on CLL cells and functional responses to BCR and other receptor-mediated signals deserve further investigation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4159-4159
Author(s):  
Francisco P. Careta ◽  
Rodrigo A. Panepucci ◽  
Daniel M Matos ◽  
Rodrigo Proto-Siqueira ◽  
Wilson A. Silva-Junior ◽  
...  

Abstract Introduction: Absence of mutations in IgVH genes or higher number of ZAP70+ cells (as a surrogate marker) in chronic lymphocytic leukemia (CLL) B-cells defines a patient group with a poorer clinical course. These features relate to the role of BCR signalling in the proliferation and survival of CLL B-cells, and establish a link between these markers and the biology of CLL prognostic subgroups. The identification of additional players in this context may help to better understand the molecular basis of this disease and contribute to develop new therapeutic approaches. A search for genes potentially related to BCR signalling, when comparing mutated and unmutated CLL cases using serial analysis of gene expression, revealed a 4-fold increase of CD72 tags in unmutated samples, a specific B cell surface glycoprotein known to transmit both positive and negative signals in BCR signalling. Objective: This finding lead us to explore the potential role of CD72 on BCR signalling in distinct CLL prognostic subgroups, as defined by ZAP70 expression. Methods: Percentage of ZAP70+ and CD72+ cells were evaluated by flow cytometry on gated CD19+CD5+ cells in 25 CLL samples. Positive cases for ZAP70 and CD72 were defined using a cut-off of 35% and 40% positive cells, respectively. Real time PCR was used to quantify the expression levels of 3 genes related to proliferation and survival, RELB, Beta-Catenin (CTNNB1) and AKT1, on 16 CD19+ enriched (purity &gt; 90%) CLL samples. Results: Samples were classified as 11 ZAP70+ and 14 ZAP70−. Median percentage of CD72+ cells in ZAP70+ was significantly higher than for ZAP70− cases (82% compared to 39%, respectively, P=0.0029). Furthermore, percentages of CD72 and ZAP70 were positively correlated (r=0.5930 and P=0.0009). Interestingly, ZAP70+ cases were restricted to CD72+ cases (n=11, CD72+ZAP70+ [+/+]), whereas six CD72+ cases were ZAP70− (ZAP70−CD72+ [−/+]). Finally, there were 8 cases CD72−ZAP70− [−/−]. No differences among these 3 groups were observed in regard to laboratory parameters (white blood cells, total lymphocytes, lymphocyte percentage, haemoglobin, haematocrit and platelet number). Despite the reduced number of samples analysed (6 +/+, 6 −/− and 4 −/+), transcripts for RELB (P&lt;0.05), CTNNB1 (P&lt;0.05), and AKT1(P=0.057) were expressed at higher levels in ZAP70+CD72+ than in ZAP70−CD72+ samples. Additionally, the transcripts were expressed at higher levels in ZAP70−CD72− than in ZAP70−CD72+ samples, and this difference was statistically significant (P&lt;0.05) for CTNB1 and AKT1, but not for RELB (P=0.054). Conclusion: Our data indicate that higher percentages of ZAP70+ cells are associated with higher expression levels of transcripts related to proliferation and survival of CLL B-cells. In the absence of ZAP70 expression, CD72 may act as a negative regulator of the BCR pathway, as indicated by the lowest levels of transcripts on ZAP70−CD72+ cases.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 359-359
Author(s):  
Weizhou Zhang ◽  
Arnon P. Kater ◽  
Han-Yu Chuang ◽  
Thomas Enzler ◽  
George F. Widhopf ◽  
...  

Abstract Abstract 359 Chromosomal translocations involving c-Myc are frequently found in high grade lymphoma and multiple myeloma. In contrast, c-Myc translocations rarely occur in low-grade lymphomas/leukemias like chronic lymphocytic leukemia (CLL), but when present they are associated with rapid disease progression and bad prognosis. Overexpression of c-myc may also be the result of increased transcription by several proto-oncogene transcription factors, including NF-kB. Mice with c-Myc de-regulation at different stages of B cell development develop either aggressive B cells lymphomas or plasma cell neoplasm. So far, no c-Myc mouse model developed low-grade lymphoma/leukemia. iMycCa mice develop an expansion of CD5+ peritoneal B1 cells, as compared with WT littermates mice. These mice have a normal life-span and very rarely develop B cell lymphoma at older age. Interestingly, in iMycCa mice mature B cells, but not plasma cells,could be rescued from apoptosis by administration of B cell-activating factor belonging to the TNF family (BAFF). To our surprise, double transgenic iMycCa/Baff-Tg (Myc/Baff) mice developed a disease resembling human CLL, with dramatically shorter mean survival than parental strains, due to early onset and rapid clonal expansion of a mature CD5+B220low B cell population. Those cells transferred the disease into Baff-Tg (Baff) mice with marked infiltration in lymphoid organs and bone marrow. Gene-expression analyses revealed that among the genes altered in Myc/Baff CD5+B220lowleukemia cells were those with known relevance to human CLL disease, including elevated anti-apoptotic Bcl2 family members. Apart from studies on individual genes, sub-network analysis was performed which showed enrichment of apoptosis-related and stress-induced gene sets in Myc/Baff CD5+CD3- leukemia cells. The NF-kB gene set, a major target downstream of BAFF signaling, was also enriched in Myc/Baff CD5+CD3- leukemia cells. We observed a continuum in levels of c-MYC mRNA in 166 samples using Affymetrix array analyses. Changes in c-Myc protein expression were confirmed by immunoblot analyses and correlated with disease progression. In accordance with the functions of c-Myc as a promoter of cell cycle progression, as well as apoptosis, we found enhanced spontaneous cell death in vitro in CLL cells expressing high levels of c-Myc, which could be abrogated by co culture with BAFF expressing nurse-like cells (NLC) or recombinant BAFF. In addition to its anti-apoptotic role, BAFF treatment of primary human CLL cells led to dramatically enhanced expression of c-Myc through the IKK/NF-kB pathway. Inhibition of the NF-kB pathway significantly reduced viability of both Myc/Baff CD5+CD3- leukemia cells and human CLL cells co-cultured with NLC. Also it significantly lowered CD5+B220low leukemia cell population in blood and spleen, and prevented the infiltration of leukemia cells into lymph nodes and bone marrow of transplanted mice. This study demonstrates a potential pathologic role for c-Myc, in the pathogenesis and progression of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5278-5278
Author(s):  
Agnieszka Bojarska-Junak ◽  
Iwona Hus ◽  
Anna Dmoszynska ◽  
Jacek Rolinski

Abstract Chronic lymphocytic leukemia (CLL) is characterized by a very heterogeneous clinical course, which is slow and indolent in most of the patients, however some patient experience rapid disease progression and anticancer therapy is required shortly after the diagnosis. Many issues in CLL development and progression are still unclear. The functional consequences of CD1d expression on tumour cells are not well understood. However, increasing evidence suggests that they may affect iNKT cells.The role of CD1d expression in CLL immunopathogenesis remains undefined. In this study, we investigated the potential role of CD1d in CLL by analyzing the level of CD1d expression on leukemic B cells in peripheral blood of120 patients and assessed its correlation with prognostic markers such as ZAP-70 and CD38 expression, Rai stages and unfavourable cytogenetic changes.Measuring CD1d expression by flow cytometry and qRT-PCR, we showed lower CD1d molecule and CD1d mRNA expression in B cells of CLL patients than of healthy controls. The frequency of CD1d+/CD19+ cells, CD1d staining intensity and CD1d transcript levels increased with the disease stage. CD1d expression was positively associated with ZAP-70 and CD38 expressions as well as with unfavourable cytogenetic changes (17p deletion, 11q deletio),. We established the relationship between high CD1d expression and shorter time to treatment and overall survival. The percentage of CD1d+/CD19+cells inversely correlated with the percentage of iNKT cells. iNKT cells ζ-chain expression was downregulated in the high-CD1d group.These results suggest that high CD1d expression is associated with poor prognosis of CLL and might be involved in disease progression. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document