Gene Expression Profiles of CD34+ Cells in Myelodysplastic Syndrome

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5078-5078
Author(s):  
Monika Belickova ◽  
Alzbeta Vasikova ◽  
Eva Budinska ◽  
Jaroslav Cermak

Abstract Myelodysplatic syndrome (MDS) represents a heterogeneous group of clonal disorders with ineffective hematopoiesis that is characterized by dysplasia and peripheral cytopenia of one or more cell lineages. We studied gene expression profiles in CD34+ cells of 42 MDS patients and 6 healthy controls using Illumina cDNA microarray technology. Nine patients had RA, 7 patients had RCMD, 17 patients had RAEB and 9 had RAEB-T. CD34+ cells were isolated from bone marrow samples using MACS magnetic columns. The quality of total extracted RNA was confirmed with the Agilent Bioanalyzer 2100. 200ng of total RNA was amplified using Illumina RNA amplification kit. cRNA targets were hybridized on the Sentrix HumanRef-8 BeadChips (> 24 000 probes), which were scanned on the Illumina BeadStation 500. The data were pre-processed and normalized by lumi R package designed to preprocess the Illumina microarray data. Normalized data were filtered by detection p-value <0.01, resulting in total number of 10 091 genes. This gene set was tested for differential expression between clinical groups and control group. For this purpose, statistical testing by ANOVA with correction for multiple testing problem by Bayesian thresholding was performed. Additionally, analysis by random-forests (RAFT) was performed. Significant genes from both analyses were merged resulting in 332 differentially expressed genes detected. Out of these, 79 genes showed ≥2.5 fold changes in gene expression between controls and all MDS groups (22 up-regulated and 57 down-regulated). Our findings were confirmed by real-time quantitative PCR for several genes (TaqMan Gene Expression Assays). We used DAVID database to annotate 79 selected genes: 8 of 22 up-regulated genes in MDS patients were recognized to play a role in regulation of transcription (LEO1, E2F6 and several zing finger proteins). A half of these over-expressed genes could not be annotated due to still unknown biological function. Within the set of the down-regulated genes in MDS patients those biological processes were predominantly detected: cell differentiation (KLF4, FOSL2, STK17B, BCL3, SNF1LK, ID2 etc.), response to stress (CXCL12, SMAD7, CYGB, etc.) and cell proliferation (MXD1, OSM, FTH1, KLF10 etc.). In the set of 31 genes with 5 fold decreased expression, we identified 8 genes involved in B-cell development. (VPREB1, VPREB3, CD79A, EBI2, LEF1, CXCL12, CTGF, GALNAC4S-6ST). RAFT analysis was performed also in the set of 332 statistically differentially expressed genes in order to evaluate accuracy of grouping the patients according their diagnosis. We detected strong heterogeneity in gene expression patterns within the MDS patients, especially in the RAEB group reflecting clinical diversity of MDS. Clustering analysis (Spearman correlation) showed that most of the RAEB-2 patients (7 out of 9) were clustered together with REAB-T whereas RAEB-1 clustered with RCMD or RA. These results underline the need of distinguishing RAEB-1 and RAEB-2 diagnosis according to WHO classification system, since their expression profiles are significantly different.

2021 ◽  
Author(s):  
Sarah I. Alto ◽  
Chih-Ning Chang ◽  
Kevin Brown ◽  
Chrissa Kioussi ◽  
Theresa M. Filtz

AbstractSoleus and tibialis anterior are two well-characterized skeletal muscles commonly utilized in skeletal muscle-related studies. Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify the gene expression patterns between soleus and tibialis anterior and analyze those genes’ functions based on past literature. This study acquired the gene expression profiles from soleus and tibialis anterior murine skeletal muscle biopsies via RNA-sequencing. Read counts were processed through edgeR’s differential gene expression analysis. Differentially expressed genes were filtered down using a false discovery rate less than 0.05c, a fold-change value larger than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus encoded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathways’ regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for muscle specialization and may help to explain skeletal muscle susceptibility to disease and drugs and refine tissue engineering approaches.


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


2019 ◽  
Vol 80 (04) ◽  
pp. 240-249
Author(s):  
Jiajia Wang ◽  
Jie Ma

Glioblastoma multiforme (GBM), an aggressive brain tumor, is characterized histologically by the presence of a necrotic center surrounded by so-called pseudopalisading cells. Pseudopalisading necrosis has long been used as a prognostic feature. However, the underlying molecular mechanism regulating the progression of GBMs remains unclear. We hypothesized that the gene expression profiles of individual cancers, specifically necrosis-related genes, would provide objective information that would allow for the creation of a prognostic index. Gene expression profiles of necrotic and nonnecrotic areas were obtained from the Ivy Glioblastoma Atlas Project (IVY GAP) database to explore the differentially expressed genes.A robust signature of seven genes was identified as a predictor for glioblastoma and low-grade glioma (GBM/LGG) in patients from The Cancer Genome Atlas (TCGA) cohort. This set of genes was able to stratify GBM/LGG and GBM patients into high-risk and low-risk groups in the training set as well as the validation set. The TCGA, Repository for Molecular Brain Neoplasia Data (Rembrandt), and GSE16011 databases were then used to validate the expression level of these seven genes in GBMs and LGGs. Finally, the differentially expressed genes (DEGs) in the high-risk and low-risk groups were subjected to gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analyses, and they revealed that these DEGs were associated with immune and inflammatory responses. In conclusion, our study identified a novel seven-gene signature that may guide the prognostic prediction and development of therapeutic applications.


2010 ◽  
Vol 10 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Kelly E. Caudle ◽  
Katherine S. Barker ◽  
Nathan P. Wiederhold ◽  
Lijing Xu ◽  
Ramin Homayouni ◽  
...  

ABSTRACTThe ABC transportersCandida glabrataCdr1 (CgCdr1), CgPdh1, and CgSnq2 are known to mediate azole resistance in the pathogenic fungusC. glabrata. Activating mutations inCgPDR1, a zinc cluster transcription factor, result in constitutive upregulation of these ABC transporter genes but to various degrees. We examined the genomewide gene expression profiles of two matched azole-susceptible and -resistantC. glabrataclinical isolate pairs. Of the differentially expressed genes identified in the gene expression profiles for these two matched pairs, there were 28 genes commonly upregulated withCgCDR1in both isolate sets includingYOR1,LCB5,RTA1,POG1,HFD1, and several members of theFLOgene family of flocculation genes. We then sequencedCgPDR1from each susceptible and resistant isolate and found two novel activating mutations that conferred increased resistance when they were expressed in a common background strain in whichCgPDR1had been disrupted. Microarray analysis comparing these reengineered strains to their respective parent strains identified a set of commonly differentially expressed genes, includingCgCDR1,YOR1, andYIM1, as well as genes uniquely regulated by specific mutations. Our results demonstrate that while CgPdr1 activates a broad repertoire of genes, specific activating mutations result in the activation of discrete subsets of this repertoire.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5023-5023
Author(s):  
Monika Belickova ◽  
Jaroslav Cermak ◽  
Jitka Vesela ◽  
Eliska Cechova ◽  
Zuzana Zemanova ◽  
...  

Abstract Abstract 5023 A direct effects of lenalidomide on gene expression in 5q- patients was studied using HumanRef-8 v2 Expression BeadChips (Illumina). Expression profiles of 6 patients (before treatment and at the time of the first erytroid response) and 6 healthy controls were investigated from CD14+ monocytes of peripheral blood. Differentially expressed genes were identified by Significance Analysis of Microarrays (SAM). Simultaneously, selected genes (TNF, JUN, IL1) were monitored in the course of treatment using Real-Time PCR with Taqman Gene Expression Assays. A comparison of gene expression levels before and during lenalidomide treatment revealed 97 differentially expressed genes (FC >2; p<0.05) related to following biological processes: immune response (16 genes), inflammatory response (11 genes), response to bacteria (8 genes), anti-apoptosis (7 genes), regulation of MAP kinase activity (5 genes), oxygen transport (4 genes), and regulation of cell proliferation (11 genes). An overexpression of a number of cytokines (e.g. TNF, IL8, IL1B, CCL3L, CXCL2, and TNFAIP3) was detected in patients before treatment, after lenalidomide administration expression of the majority of the up-regulated cytokine genes decreased to the control baseline level. Detected overproduction of the cytokines in 5q- syndrome may lead to an increased apoptosis of hematopoietic progenitor cells and together with excessive oxidative stress may contribute to the damage the hematopoietic niche. In the same manner, untreated patients showed suppressed expression of two genes (CXCR4, CRTAP) which play an important role in the stem cell niche. After treatment, we detected increased expression of these genes. Both the observations might explain favorable effects of lenalidomide on the bone marrow stroma defect seen in 5q- syndrome. On the other hand, a substantial increase of the ARPC1B gene (an activator and a substrate of Aurora A) expression was detected after lenalidomide treatment. Since overexpression of Aurora A leads to polyploidy and chromosomal instability, ARPC1B might play a role in the disease progression observed in some patients treated with lenalidomide. To conclude, described changes in genes expression may contribute to identification of the pathways affected by lenalidomide and to the explanation of some effects of this drug that have not been fully understood yet. Supported by grants NS/9634 MZCR, UHKT2005 00023736, MSM0021620808 and COST EUGESMA Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3020-3020
Author(s):  
Alicia Báez ◽  
Beatriz Martin-Antonio ◽  
Concepción Prats-Martín ◽  
Isabel Álvarez-Laderas ◽  
María Victoria Barbado ◽  
...  

Abstract Abstract 3020 Introduction: Hematopoietic progenitors cells (HPCs) used in allogenic transplantation (allo-HSCT) may have different biological properties depending on their source of origin: mobilized peripheral blood (PB), bone marrow (BM) or umbilical cord (UC), which may be reflected in miRNAs or gene expression. The identification of different patterns of expression could have clinical implications. The aim of this study was to determine differences in miRNAs and gene expression patterns in the different sources of HPCs used in allo-HSCT. Materials and Method: CD34 + cells were isolated by immunomagnetic separation and sorting from 5 healthy donors per type of source: UC, BM and PB mobilized with G-CSF. A pool of samples from PB not mobilized was used as reference group. We analyzed the expression of 375 miRNAs using TaqMan MicroRNA Arrays Human v2.0 (Applied Biosystems), and gene expression using Whole Human Genome Oligo microarray kit 4×44K (Agilent). The expression levels of genes and miRNAs were obtained by the 2-ΔΔCTmethod. From expression data hierarchical clustering was performed using the Euclidean distance. To identify genes and miRNAs differentially expressed between the different sources of HPCs statistical Kruskal Wallis test was applied. All analysis were performed using the Multiexperiment Viewer 4.7.1. The function of the miRNAs and genes of interest was determined from the various databases available online (TAM database, Gene Ontology and TargetScan Human). Results: Forty-two miRNAs differentially expressed between the different sources were identified. As compared to BM or UC, in mobilized PB most miRNAs were overexpressed, including the miRNA family of miR515, which is characteristic of embryonic stem cells. On the other hand, 47 genes differentially expressed between the different sources were identified. Interestingly, a similar pattern of expression was observed between movilized PB and UC as compared to BM. Interestingly, 13 of these genes are targets of the miRNAs also identified in this study, which suggests that their expression might be regulated by these miRNAs. Conclusion: There are significant differences in miRNAs and gene expression levels between the different sources of HPCs Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2779-2779 ◽  
Author(s):  
Andrea Pellagatti ◽  
Moritz Gerstung ◽  
Elli Papaemmanuil ◽  
Luca Malcovati ◽  
Aristoteles Giagounidis ◽  
...  

Abstract A particular profile of gene expression can reflect an underlying molecular abnormality in malignancy. Distinct gene expression profiles and deregulated gene pathways can be driven by specific gene mutations and may shed light on the biology of the disease and lead to the identification of new therapeutic targets. We selected 143 cases from our large-scale gene expression profiling (GEP) dataset on bone marrow CD34+ cells from patients with myelodysplastic syndromes (MDS), for which matching genotyping data were obtained using next-generation sequencing of a comprehensive list of 111 genes involved in myeloid malignancies (including the spliceosomal genes SF3B1, SRSF2, U2AF1 and ZRSR2, as well as TET2, ASXL1and many other). The GEP data were then correlated with the mutational status to identify significantly differentially expressed genes associated with each of the most common gene mutations found in MDS. The expression levels of the mutated genes analyzed were generally lower in patients carrying a mutation than in patients wild-type for that gene (e.g. SF3B1, ASXL1 and TP53), with the exception of RUNX1 for which patients carrying a mutation showed higher expression levels than patients without mutation. Principal components analysis showed that the main directions of gene expression changes (principal components) tend to coincide with some of the common gene mutations, including SF3B1, SRSF2 and TP53. SF3B1 and STAG2 were the mutated genes showing the highest number of associated significantly differentially expressed genes, including ABCB7 as differentially expressed in association with SF3B1 mutation and SULT2A1 in association with STAG2 mutation. We found distinct differentially expressed genes associated with the four most common splicing gene mutations (SF3B1, SRSF2, U2AF1 and ZRSR2) in MDS, suggesting that different phenotypes associated with these mutations may be driven by different effects on gene expression and that the target gene may be different. We have also evaluated the prognostic impact of the GEP data in comparison with that of the genotype data and importantly we have found a larger contribution of gene expression data in predicting progression free survival compared to mutation-based multivariate survival models. In summary, this analysis correlating gene expression data with genotype data has revealed that the mutational status shapes the gene expression landscape. We have identified deregulated genes associated with the most common gene mutations in MDS and found that the prognostic power of gene expression data is greater than the prognostic power provided by mutation data. AP and MG contributed equally to this work. JB and PJC are co-senior authors. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 4501-4501
Author(s):  
S. Rao ◽  
D. Cunningham ◽  
M. Benson ◽  
R. Te Poele ◽  
L. Welsh ◽  
...  

4501 Background: Whilst preoperative chemotherapy has demonstrated survival benefit for pts with potentially resectable OG cancer it is not possible to predict the benefit for an individual pt. This study was designed to prospectively correlate GEP with clinical outcome. Methods: Eligible pts were deemed to have resectable disease after staging CT, EUS, and laparoscopy as indicated & following discussion at the multidisciplinary team meeting. All pts received neoadjuvant platinum & fluoropyrimidine based chemotherapy & clinical data were entered prospectively onto a study specific database. GEP were produced from total RNA isolated from snap frozen pre treatment tumour biopsies obtained at baseline endoscopy. Labelled cDNA was hybridised versus a universal human reference using an in house c DNA array of 22,000 clones. Results: Of the pts with adequate follow up accrued between 2002–2005, 35 met the quality control measures for the arrays. Median age=66 yrs (47–83); male=32, female=3; tumour subsites: oesophagus=23, oesophago-gastric junction (OGJ)=12; adenocarcinoma=35; T stage: T 2=3, T3=30, T4=2; N stage: N0=12, N1=23; performance status 0=7, 1=28. Median follow up=938 days. Median overall survival (OS) = 570 days. Prognostic groups were designated according to the median OS (days) of the group: good > median and poor < median. Supervised hierarchical clustering of normalised data revealed significantly differentially expressed genes based on OS (p<0.01) with 2 distinct clusters: a poor outcome group: N= 17 (2yr OS 17.6%) [95% CI: 4.3–38.3], a good outcome group: N=18 (2 yr OS 55%) [95% CI: 30.5–74.8]. Of the differentially expressed genes, those involved in receptor tyrosine kinase signalling & cell growth were amongst the most significantly affected pathways. Conclusions: This novel technique using GEP in tumour biopsies has successfully identified groups of tumours with distinct gene expression profiles that correlate with survival. The approach warrants further validation in a larger cohort. It could facilitate the development of tailored treatment according to individual tumour biology in OG cancer. No significant financial relationships to disclose.


2017 ◽  
Vol 15 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Na You ◽  
Xueqin Wang

The microarray technology is widely used to identify the differentially expressed genes due to its high throughput capability. The number of replicated microarray chips in each group is usually not abundant. It is an efficient way to borrow information across different genes to improve the parameter estimation which suffers from the limited sample size. In this paper, we use a hierarchical model to describe the dispersion of gene expression profiles and model the variance through the gene expression level via a link function. A heuristic algorithm is proposed to estimate the hyper-parameters and link function. The differentially expressed genes are identified using a multiple testing procedure. Compared to SAM and LIMMA, our proposed method shows a significant superiority in term of detection power as the false discovery rate being controlled.


2006 ◽  
Vol 13 (2) ◽  
pp. 541-558 ◽  
Author(s):  
G Capurso ◽  
S Lattimore ◽  
T Crnogorac-Jurcevic ◽  
F Panzuto ◽  
M Milione ◽  
...  

The intrinsic nature of tumour behaviour (stable vs progressive) and the presence of liver metastases are key factors in determining the outcome of patients with a pancreatic endocrine tumour (PET). Previous expression profile analyses of PETs were limited to non-homogeneous groups or to primary lesions only. The aim of this study was to investigate the gene expression profiles of a more uniform series of sporadic, non-functioning (NF) PETs with progressive disease and, for the first time, their liver metastases, on the Affymetrix human genome U133A and B GeneChip set. Thirteen NF PET samples (eight primaries and five liver metastases) from ten patients with progressive, metastatic disease, three cell lines (BON, QGP and CM) and four purified islet samples were analysed. The same samples were employed for confirmation of candidate gene expression by means of quantitative RT-PCR, while a further 37 PET and 15 carcinoid samples were analysed by immunohistochemistry. Analysis of genes differentially expressed between islets and primaries and metastases revealed 667 up- and 223 down-regulated genes, most of which have not previously been observed in PETs, and whose gene ontology molecular function has been detailed. Overexpression of bridging integrator 1 (BIN1) and protein Z dependent protease inhibitor (SERPINA10) which may represent useful biomarkers, and of lymphocyte specific protein tyrosine kinase (LCK) and bone marrow stromal cell antigen (BST2) which could be used as therapeutic targets, has been validated. When primary tumours were compared with metastatic lesions, no significantly differentially expressed genes were found, in accord with cluster analysis which revealed a striking similarity between primary and metastatic lesions, with the cell lines clustering separately. We have provided a comprehensive list of differentially expressed genes in a uniform set of aggressive NF PETs. A number of dysregulated genes deserve further in-depth study as potentially promising candidates for new diagnostic and treatment strategies. The analysis of liver metastases revealed a previously unknown high level of similarity with the primary lesions.


Sign in / Sign up

Export Citation Format

Share Document