Base Excision Repair Deficiency in Acute Myeloid Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1106-1106
Author(s):  
Werner Olipitz ◽  
Nicole Scheer ◽  
Franz Quehenberger ◽  
Karin Hiden ◽  
Julia Rankl ◽  
...  

Abstract Abstract 1106 Poster Board I-128 Base excision repair (BER) is the main DNA repair mechanism for single DNA base lesions resulting from oxidative stress, chemical damage or ionizing radiation. We investigated BER in acute myeloid leukemia (AML), a disorder characterized by widespread genomic instability. AML cell lines were treated with H2O2 and DNA damage induction and repair were monitored using the alkaline comet assay. Significantly reduced single strand break (SSB) formation - representing BER intermediates - was observed in 5/10 cell lines. Significantly reduced SSB formation was also demonstrated in 15/30 leukemic samples from patients with therapy-related AML, 13/35 with de novo AML and 14/26 with AML following a myelodysplastic syndrome but only in 1/31 CD34+ hematopoietic stem and progenitor cell specimens isolated from umbilical cord blood (P=.0000056). Reduced SSB formation was not due to differences in intracellular ROS concentrations or selection for a damage resistant subpopulation. To determine whether initial steps of BER were impaired, incision assays with oligonucleotides harboring either 7,8-dihydro-8-oxoguanine or the AP site analog furan were performed. Significantly diminished cleavage for both substrates was observed in cell lines that did not exhibit SSB formation upon H2O2 treatment. These data demonstrate that BER is functionally impaired in a significant proportion of myeloid cell lines and leukemic cells from patients with AML. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2901-2901
Author(s):  
Nanami Gotoh ◽  
Takayuki Saitoh ◽  
Noriyuki Takahashi ◽  
Rumi Ino ◽  
Yuya Kitamura ◽  
...  

Abstract Background: Approximately 80% of acute myeloid leukemia (AML) patients can achieve complete remission, but around half of them relapse within five years. Recent studies have shown that AML relapse is associated with additional genetic mutation calls gclonal evolutionh in leukemic cell population (Ding, et al. Nature. 2012 & Parkin B, et al. Blood. 2013). These studies suggested that cytotoxic chemotherapy damaged cellular DNA and caused genetic mutation. In fact, anthracycline can produce 8-oxoguanine (8-OG) through induction of oxidative stress. 8-OG is most common DNA damage, which cause G:C to T:A transversion mutation. It is reported that transversion mutation more frequently observed in relapsed AML than primary AML. Base excision repair (BER) plays important role to correct base lesion including 8-OG and suppress genetic mutation. Therefore, we hypothesized BER gene polymorphisms may affect the risk of AML relapse, and focused five major functional polymorphisms: OGG1 S326C, MUTYH Q324H, APE1 D148E, XRCC1 R194W and XRCC1 R399Q. Material & Method: Ninety-four consecutive adults with AML who had achieved their first complete remission were recruited (male: 52, female: 42, age: 15-83 years, median age: 55.7 years). To remove the bias of the group, we also evaluated the risk in patients of non-M3 and under 65 years old (male: 22, female: 19, age: 15-64 years, median age: 49.0 years) (trimming group). These patients treated on Japan Adult Leukemia Study Group (JALSG) treatment protocols consisted of daunorubicin or idarubicin plus cytarabine (JALSG AML95, AML97, AML201, AML209). Genotyping was performed by PCR-RFLP method. The X2-test was used to compare the distribution of genotype and allele frequencies in patients. Leukemia-free survival (LFS) was calculated using the Kaplan-Meier method. Survival curves were compared using the log-rank test. In multivariate analysis, a stepwise selection procedure was performed using the proportional hazards Cox model for LFS. The variables were chosen with reference to previous studies; age, sex, white blood cell count and lactate dehydrogenase at diagnosis, number of induction courses, stem cell transplantation, MRC classification and history of tumor. This study was approved by the Institutional Review Board of Gunma University Hospital. Results: The OGG1 S326C CC genotype was observed significantly more often in the relapsed group (28.9% vs. 8.9%, OR = 4.10, 95% CI = 1.35-12.70, p = 0.01). In trimming group, the CC genotype was also observed more frequently in the relapsed group (50.0% vs. 6.9%, OR = 13.5, 95% CI = 2.17-84.0, p = 0.002). In addition, the OGG1 S326C CC genotype experienced a shorter median LFS than those with a non-CC genotype (CC vs. non-CC = 27.0 months vs. not reached, p = 0.02) (Figure 1). This genotype was also associated with poor LFS in trimming group (CC vs. non-CC = 11.0 months vs. not reached, p < 0.001) (Figure 1). Furthermore, multivariate analysis of LFS revealed OGG1 S326C CC genotype as an independent prognostic factor (HR = 4.32, 95% CI = 1.70-11.0, p = 0.002), like age, number of induction courses, and MRC classification (Table 1). Other polymorphisms had no significant effect on the risk of relapse. Conclusion: We previously reported that mutations by 8-OG were more efficiently suppressed in OGG1-S326 transduced cells than in OGG1-C326 transduced cells. Therefore, we hypothesized that low OGG1 activity promotes relapse of AML. To the best of our knowledge, this is the first report to show an association between BER gene polymorphisms and the relapse of AML. Our data suggest that OGG1 S326C can be a prognostic factor for AML relapse. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1355-1355
Author(s):  
Atsushi Iwasaki ◽  
Takayuki Saitoh ◽  
Yasuhiro Nitta ◽  
Batchimeg Norjimaa ◽  
Chiharu Omiya ◽  
...  

Abstract Background Base excision repair (BER) systems have important role for repairing oxidative DNA damage, and known to influence the carcinogenesis and the response to anti-cancer treatments. Although few studies have shown that several DNA repair genes are associated with an increased risk of leukemia, the clinical significance of BER polymorphisms in acute myeloid leukemia (AML) patients remains unclassified. The aim of this study was to evaluate the impact of polymorphisms in genes encoding four main proteins of BER system: OGG1 Ser326Cys, MUTYH Gln324His, APE1 Asp148Glu, and XRCC1 Arg399Gln, and on the risk of AML. Methods Between December 1991 and May 2013, 99 patients (male/female 55/44, median age 58 years, range 15-86 years) diagnosed as AML and 192 healthy controls were included in this study. Cytogenetic subgroups were classified as good, intermediate, and adverse risk according to NCCN guidelines. Genomic DNA was isolated from peripheral blood using the DNA extraction kit. Genotyping was determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Genotype and allele frequencies were compared between patients group and control group by using χ2-test. Probability values <0.05 were considered statistically significant. All patients and healthy controls received written information about the study. This study was approved by the Institutional Research Board of Gunma University Hospital. Results The APE1 Asp/Asp genotype increases the risk of AML (OR 2.30, 95% CI 1.41-3.77, p<0.001), whereas APE1 Glu/Glu genotype reduces the risk of AML (OR 0.34, 95% CI 0.14-0.80, p<0.05). In contrast, there were no significant differences in the genotype frequencies OGG1 Ser326Cys, MUTYH Gln324His, and XRCC1 Arg399Gln between AML patients and control group. Next we compared the frequency of cytogenetic abnormalities according to BER polymorphism. The AML patients with OGG1 Ser/Ser genotype increased the frequencies of (15;17) type (p<0.05) and good risk group. Moreover, the AML patients with MUTYH His/His genotype increased the frequencies of complex type (p<0.02) and reduced the frequencies of t(8;21) type. Conclusions According to our data, BER gene polymorphisms may affect the carcinogenesis and the cytogenetic risk of AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 860-860
Author(s):  
Werner Olipitz ◽  
Karin Lind ◽  
Nicole Monsberger ◽  
Anna Katschnig ◽  
Aswin Mangerich ◽  
...  

Abstract Base excision repair (BER) is the primary DNA repair mechanism dealing with oxidative base lesions. Oxidative DNA base lesions are the predominant type of DNA damage in mammalian cells. Deficiencies in glycosylases, the BER initiating enzymes, have been associated with increased genomic instability and increased frequencies of cancer. Here we investigated the role of oxidative BER in acute myeloid leukemia (AML). We determined oxidative BER activity in 99 primary AML blast cell samples, 34 CD34+ umbilical cord blood cell samples and 27 AML cell lines using the alkaline comet assay. Oxidative base lesion levels were determined in 10 AML cell lines using a modified version of the Comet assay with the bacterial enzymes Fpg and Endo III as well as using liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS). Using nuclear protein extracts in an oligonucleotide incision assay we tested the enzymatic activity of oxidative glycosylases. Finally, mutational analysis, gene expression analysis and protein expression of oxidative glycosylases was used using Sanger sequencing, real time PCR and western blot of nuclear extracts, respectively. We found DNA strand incision of oxidatively damaged bases significantly impaired in primary AML cells as compared to UCB cells (p= 0.003) suggesting a deficiency in BER glycosylases. In addition, 5/27 AML cell lines showed impaired DNA strand incision activity. We hypothesized that BER deficient cells harbor an increased number of oxidative base lesions compared to BER proficient cells. Using a modified comet assay and LC-MS/MS we were able to show that increased numbers of unrepaired oxidative base lesions were indeed present in glycosylase deficient AML cells (comet assay: p= 0.0001; mass spec: p= 0.03). We then evaluated the activity of the predominant oxidative DNA glycosylase, OGG1, and found significantly decreased DNA strand incision activity in BER deficient cells as compared to proficient cells (p= 0.002) further supporting the fact that glycosylases are impaired in BER deficient cells. Determining causes of BER deficiency preliminary experiments showed significantly decreased expression of nuclear OGG1 protein in BER deficient cells but did not reveal novel non-synonymous mutations or a difference in gene expression. Taken together we found impaired BER glycosylases in a substantial number of primary AML samples and AML cell lines resulting in increased levels of potentially mutagenic oxidative DNA base lesions Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (4) ◽  
pp. 858-867 ◽  
Author(s):  
Jing Fang ◽  
Garrett Rhyasen ◽  
Lyndsey Bolanos ◽  
Christopher Rasch ◽  
Melinda Varney ◽  
...  

Bortezomib (Velcade) is used widely for the treatment of various human cancers; however, its mechanisms of action are not fully understood, particularly in myeloid malignancies. Bortezomib is a selective and reversible inhibitor of the proteasome. Paradoxically, we find that bortezomib induces proteasome-independent degradation of the TRAF6 protein, but not mRNA, in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cell lines and primary cells. The reduction in TRAF6 protein coincides with bortezomib-induced autophagy, and subsequently with apoptosis in MDS/AML cells. RNAi-mediated knockdown of TRAF6 sensitized bortezomib-sensitive and -resistant cell lines, underscoring the importance of TRAF6 in bortezomib-induced cytotoxicity. Bortezomib-resistant cells expressing an shRNA targeting TRAF6 were resensitized to the cytotoxic effects of bortezomib due to down-regulation of the proteasomal subunit α-1 (PSMA1). To determine the molecular consequences of loss of TRAF6 in MDS/AML cells, in the present study, we applied gene-expression profiling and identified an apoptosis gene signature. Knockdown of TRAF6 in MDS/AML cell lines or patient samples resulted in rapid apoptosis and impaired malignant hematopoietic stem/progenitor function. In summary, we describe herein novel mechanisms by which TRAF6 is regulated through bortezomib/autophagy–mediated degradation and by which it alters MDS/AML sensitivity to bortezomib by controlling PSMA1 expression.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1621-1621
Author(s):  
Jing Jin ◽  
Magali Humbert ◽  
Mario P. Tschan

Abstract Autophagy is an intracellular degradation system that ensures a dynamic recycling of cytoplasmic contents. Autophagy is required for self-renewal and cell survival under stress caused by a variety of stimuli including starvation and chemotherapy. There is accumulating evidence for additional functions of autophagy during myeloid development and hematopoietic stem cell maintenance. In this study, we used primary acute myeloid leukemia (AML) samples and human APL/AML cell lines to investigate the autophagy pathway active in all-trans retinoic acid (ATRA) mediated neutrophil differentiation. By characterizing the autophagic pathway during neutrophil differentiation of APL cells in more detail, we identified a non-canonical autophagy pathway, which not necessarily requires a hierarchal involvement of all autophagy-related (ATG) proteins. In addition to previous findings, from us and others, showing that ATRA-induced autophagy in APL cells is Beclin-1 independent, we discovered that ATRA-induced autophagy during APL differentiation is dependent on only one ATG16L isoform. The ATG16L proteins ATG16L1 and L2 are part of the ubiquitin-like conjugation systems ATG12-ATG5-ATG16L1 and ATG8/LC3 that are essential for phagophore elongation and autophagosome maturation. ATG16L2 is an isoform of ATG16L1, which is dispensable for starvation-induced autophagy despite forming an ATG12-ATG5-ATG16L2 complex in COS-7 cells. By investigating ATG16 gene expression in acute myeloid leukemia (AML) blast cells, we found that ATG16L1 as well as L2 are significantly downregulated in primary AML patient samples. In addition, neutrophil differentiation of APL/AML cell lines and CD34+ myeloid progenitor cells resulted in a significant induction of ATG16L1 and ATG16L2 expression. Induction of ATG16L2 was clearly more prominent than that of ATG16L1. Importantly, knocking down ATG16L2 but not ATG16L1 significantly attenuated neutrophil differentiation of AML cells as evidenced by decreased expression of the differentiation markers CD11b, GCSFR and CEBPE. Moreover, inhibition of ATG16L2 but not ATG16L1 resulted in decreased autophagy induction upon ATRA-treatment. Conversely, silencing ATG16L1 but not ATG16L2 was able to inhibit canonical starvation but not ATRA-induced differentiation associated autophagy in APL cells. Our data reveal distinct functions of ATG16L1 and ATG16L2 in starvation and ATRA-induced autophagy. To investigate the transcriptional regulation of ATG16L2 during neutrophil differentiation, we screened the ATG16L2 promoter region for putative transcription factor binding sites. We identified PU.1 as a transcriptional regulator of ATG16L2 using chromatin immunoprecipitation, PU.1 knockdown APL cells and a PU.1 inducible AML cell line model. These findings are in line with our earlier findings that PU.1 activates transcription of the ATG genes WIPI1, ATG3, MAP1S and ATG4C during APL differentiation. Our data provide strong evidence for a particular, non-canonical subtype of autophagy operative during neutrophil differentiation of APL cells. ATG16L2, in contrast to ATG16L1 is essential for successful ATRA-induced neutrophil differentiation and autophagy. This is in sharp contrast to its lack of function during starvation-induced autophagy. Deciphering the particular autophagy pathway active during APL differentiation is a prerequisite to develop novel differentiation therapies that are based on autophagy modulation. Since our findings have been validated in non-APL cells, activation of autophagy might support neutrophil differentiation of AML cells in a more general way. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 21 (1) ◽  
pp. 164 ◽  
Author(s):  
Thomas Cluzeau ◽  
Nathan Furstoss ◽  
Coline Savy ◽  
Wejdane El Manaa ◽  
Marwa Zerhouni ◽  
...  

Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3782-3782
Author(s):  
Theresa Placke ◽  
Katrin Faber ◽  
Atsushi Nonami ◽  
Helmut R. Salih ◽  
Stephen M. Sykes ◽  
...  

Abstract Chromosomal rearrangements involving the H3K4 methyltransferase MLL trigger aberrant gene expression programs in hematopoietic stem and progenitor cells and give rise to an aggressive subtype of acute myeloid leukemia (AML) that is associated with intermediate or poor survival. Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies in the clinic, in part because mutant MLL is difficult to target directly and it is incompletely understood which of the genes affected by altered epigenetic regulation in MLL-rearranged AML are responsible for malignant transformation. To search for essential signaling pathways in MLL-rearranged AML that might serve as new therapeutic targets, we performed loss-of-function RNA interference (RNAi) screens in 5 AML cell lines (NOMO-1, THP-1, OCI-AML3, HL-60, U937) using a lentiviral short hairpin RNA (shRNA) library, and observed that the cell cycle regulator CDK6, but not its functional homolog CDK4, was preferentially required by MLL-AF9pos NOMO-1 and THP-1 cells. The enhanced CDK6 dependence of MLL-rearranged cells was confirmed in an expanded panel of AML cell lines (MLL-rearranged, n=6; MLL wildtype [WT], n=4) that also included cell lines harboring other MLL fusions (MLL-AF4 and MLL-AF6), and the RNAi-induced phenotype was countered by overexpression of an shRNA-resistant CDK6 cDNA. Stable knockdown of MLL-AF9 in MLL-AF9pos cell lines and overexpression of MLL-AF9 in WT MLL-expressing cell lines, normal human CD34pos cells, or Ba/F3 murine pro-B cells led to concordant changes in CDK6 mRNA and protein levels that resembled those of HOXA9, a known MLL-AF9 target, indicating that CDK6 is rendered essential via transcriptional activation by truncated MLL. Analysis of cell cycle distribution, apoptosis induction, and myeloid differentiation demonstrated that the differential growth-inhibitory effect of CDK6 suppression was mainly attributable to myeloid differentiation, as MLL-AF9pos cell lines upregulated CD11b expression and assumed a more mature, macrophage-like morphology upon CDK6 knockdown, effects not observed in WT MLL-expressing cells. Furthermore, the immature phenotype of NOMO-1 cells could be rescued by overexpression of an shRNA-resistant CDK6 cDNA. Consistent with the observations in AML cell lines, knockdown of Cdk6 also impaired the proliferation and in vitro clonogenic activity of primary murine bone marrow (BM) cells stably transduced with MLL-AF9, whereas cells expressing another leukemogenic fusion gene (MOZ-TIF2) and Ba/F3 cells were largely unaffected. We also expressed MLL-AF9 in unfractionated BM derived from Cdk6 knockout mice and observed that colony numbers were gradually reduced in cultures initiated with Cdk6+/- and Cdk6-/- BM compared to WT BM. Furthermore, most of the colonies obtained were small and displayed loose morphology in contrast to the large, dense, blast-like colonies seen in cultures initiated with transduced WT BM. We are currently investigating whether Cdk6 is also required for AML development and propagation in vivo using a murine BM transplantation model of MLL-AF9-induced leukemia. The context-dependent effects of lowering CDK6 expression could be recapitulated in cell lines and primary human AML specimens using palbociclib (also known as PD-0332991), a small-molecule inhibitor of CDK4 and CDK6 enzymatic activity that is in clinical development as an anticancer agent. We are currently devising strategies to combine this compound with cytotoxic chemotherapy as well as other targeted therapeutics, such as small-molecule bromodomain inhibitors, to maximize killing of MLL-rearranged AML cells. Together, our data (1) identify CDK6 as a critical and potentially “actionable” effector of MLL fusion proteins in leukemogenesis, (2) link the catalytic activity of CDK6 to arrested myeloid differentiation in MLL-rearranged AML, and (3) underscore that cell cycle regulators thought to normally act redundantly may have distinct functions in different genetic contexts. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (23) ◽  
pp. 5826 ◽  
Author(s):  
Tobias Gluexam ◽  
Alexander M. Grandits ◽  
Angela Schlerka ◽  
Chi Huu Nguyen ◽  
Julia Etzler ◽  
...  

The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4563-4563
Author(s):  
Sabine E. Kaiser ◽  
Josef Mautner ◽  
Christoph Schmid ◽  
Helga Schmetzer ◽  
Antonia Gaeta ◽  
...  

Abstract Adoptive immunotherapy with donor T-cells has been used successfully for the treatment of both relapsed chronic and acute myeloid leukemia after hematopoietic stem cell transplantation. Here we describe a method for the detection of T cell immunity by the inhibition of cytokine driven growth of blasts. According to the heterogeneous growth pattern of various cases of acute myeloid leukemia (AML) the culture requirements had to be determined individually. The basic cytokine cocktail consisted of SCF (50 ng/mL), GM-CSF (100 ng/mL), IL3 (50 ng/mL), G-CSF (100 ng/mL) and EPO (2 U/mL); this cocktail succeeded to induce blast-proliferation in 15 out of 16 AML samples tested. In a first step we determined optimal growth conditions regarding cell density and the day of linear growth. The peak proliferation was measured by the incorporation of tritium labeled thymidine at various time points. It ranged between days 2 and 5. In a second step, donor cells were stimulated for 10 days with irradiated AML-cell lines (MonoMac6, THP1) or patient derived AML blasts. After harvesting, the donor cells were irradiated (15 Gy) and co-cultured with the AML-cell lines, or the patients cytokine stimulated blast suspensions. Inhibition of growth was measured by the incorporation of tritium labeled thymidine at the previously determined day of linear proliferation of the AML-blasts. A significant inhibition of blast proliferation was observed in the co-culture of normal T cells with both AML-cell lines. In HLA-identical combinations T cells were primed by dendritic cells derived from AML blasts and re-stimulated on days 6 and 10. T cells primed by this method inhibited the growth of AML blasts in higher effector target ratios, in lower ratios no inhibition or even stimulation was observed. In summary, the delta-assay is a suitable tool to monitor specific anti-leukemic immune responses of donor lymphocytes even against very heterogeneous blast populations, if individualized culture conditions are considered.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1206-1206
Author(s):  
Claudia Ortlepp ◽  
Christine Steudel ◽  
Sina Koch ◽  
Angela Jacobi ◽  
Satu Kyttaelae ◽  
...  

Abstract FLT3-mutations are among the most common abnormalities in adult acute myeloid leukemia. These mutations induce constitutive activation of the receptor and downstream signaling pathways, including RAS/ERK, PI3K and STAT5-signalling. The most frequent aberration is an internal tandem duplication (ITD) of the juxtamembrane domain coding sequence, which is present in up to 27% of the patients with AML and has been associated with inferior prognosis. We have recently demonstrated by microarray analysis that leukemic samples of patients with FLT3-ITD mutations have significantly upregulated expression levels of Autotaxin (ATX). The ATX protein acts as a secreted lysophospholipase D (lysoPLD) through generating lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). LPA has several important functions in cell migration and proliferation and acts via G-protein coupled receptors. It has been shown that ATX represents an aberrantly expressed motility and growth factor in a variety of cancer cells. However data on ATX in myeloid leukemias and especially in AML are missing. To study more deeply the role of ATX in leukemogenesis, we screened a series of human leukemic model cell lines for ATX expression. Using retroviral transduction, two alternatively spliced transcripts of ATX were expressed in several human leukemic cell lines without detectable levels of endogenous ATX. To investigate the ATX function and expression in normal haematopoiesis we used CD34+ human progenitor cells. The expression of ATX transcripts was confirmed at both mRNA and protein levels by RT-PCR and Western blotting, respectively. Transwell migration assays in the presence of LPC or LPA were performed to study effects of ATX on cell motility. Proliferation and clonogenic potential were investigated using MTT and colony forming assays. Moreover, we examined the effect of the FLT3 inhibitor N-benzoylstaurosporine (PKC412) on ATX expression and ATX mediated migration in MV4-11 cells. High ATX expression was found primarily in malignant cells. Western blot analysis showed that detectable levels of ATX are secreted into medium within 2 hours. In normal cells, highest ATX mRNA expression was found in purified CD34 cells, but could also be found at lower levels in T-cells. Stable overexpression of FLT3-ITD in OCI-AML3 cells induced an increased ATX expression (up to 6 fold). Vice versa, inhibition of FLT3-ITD by sublethal doses of PKC412 in MV4-11 cells resulted in a significant reduction of ATX expression down to 10% of the initial expression level. Furthermore, PKC412 treatment resulted in a complete loss of LPC or LPA induced specific migratory capacity in MV4-11 cells. The transduction of ATX increased the colony-forming capacity by 75% and significantly increased the short term proliferation. LPA increased chemotaxis in human leukemic cell lines and human CD34+ progenitors in a dose dependent manner and induced significantly higher migratory rates by at least 50%. LPC induced chemotaxis by 80–200% only in cells with high expression of endogenous or exogenous ATX, demonstrating the autocrine activity of ATX. Ongoing studies on the mechanism of ATX expression showed that ionomycin, an activator of the Ca2+–calcineurin–NFAT signalling pathway, upregulated ATX mRNA in several leukemic cell lines as well as in human primary progenitors up to 5-fold, which could be completely blocked by cyclosporine A treatment, indicating an involvement of NFAT in the regulation of ATX. Our data suggest that the production of bioactive LPA through ATX is involved in controlling proliferation and migration of hematopoietic stem cells and its deregulation may contribute to the pathogenesis of AML, especially in patients with FLT3-ITD mutations.


Sign in / Sign up

Export Citation Format

Share Document