The Functional Role of Microrna 15a/16-1 as Tumor Suppressor Genes in Multiple Myeloma.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1963-1963
Author(s):  
Moshe E Gatt ◽  
Margaret Ebert ◽  
Mala Mani ◽  
Yunyu Zhang ◽  
Roi Gazit ◽  
...  

Abstract Abstract 1963 Poster Board I-986 Background: Multiple Myeloma (MM), a cancer of plasma cells is characterized by frequent chromosomal alterations. Deletion of chromosome 13, especially band 13q14, is commonly observed in early stages of MM, suggesting the presence of tumor suppressor genes within this region. When studied in the context of CLL, the miR 15a and 16-1 cluster was associated with a distinct miR signature and clinical outcome. Over-expression of miR16 caused induction of apoptosis and downregulation of the anti apoptotic gene BCL2 in a megakaryocytic leukemia cell line and induced growth arrest in MM cells. Nonetheless, being lost in CLL, MM, MCL and LPL, their functional role has not been studied using a loss-of-function approach in any of these lymphoid malignancies. Here, we describe the generation of an in vivo system for the long term, stable knockdown of miR 15a/ 16-1 expression in myeloma cells to recapitulate the conditions seen in chromosome 13q14 deleted MM. Methods: Using lentiviral vectors to stably express a competitive sponge miR16 inhibitor we set up a system to functionally validate the role of microRNA 15a/16-1 cluster. Pure populations of lentivirally transduced MM cell lines were sorted by flow cytometry using GFP marker. Decreased miRs 15a and 16 expression levels were assessed by Northern blot and R-luciferase reporter system. Cell growth rate was measured using trypan blue counting, and thymidine incorporation. Cell cycle analysis was measured by flow cytometry after staining with PI. Intracellular signal modulation was demonstrated by Western blotting. RNA from MM cell lines expressing the control sponge or sponge16 were hybridized on an Affymetrix U133A 2.0 array chip, and validated using quantitative real time PCR. Xenograft murine models were performed using the stable MM cell lines injected into 6-week old NOD.CB17-PrkdcSCID/J irradiated mice. Results: Selected stable miR knockdown MM cell lines exhibited significantly reduced expression of miRs15a/16-1 as assessd by both by mRNA levels and miR luciferase reporter assays. The knockdown cells showed a significant increase in growth rates (1.5-2 fold) compared to control cells, as measured by viable cell counts and proliferation by thymidine incorporation in vitro. Importantly, miR16 inhibition decreased animal survival in a xenograft model of MM by increasing tumor load, invasiveness and host angiogenesis. To further delineate the role of miR15a/16 in MM and to gain additional insight into the possible target genes regulated by this cluster, we performed gene expression-profiling analysis in controls and miR16 deficient MMS1 and RPMI cell lines. Since our sponge system produces downregulation of the miRs, we focused on the upregulated probes. Expression profiling analysis of miR16 deficient cells identified a surprisingly large number of downstream target-genes such as FGFR1, PI3KCa, MDM4, VEGFa, as well as secondary affected genes such as JUN and Jag1. These results were verified both at the mRNA level and the protein level, as well as in other MM cell lines. Moreover, we were able to show that these knockdown cells were partially addicted to some of these pathways using specific drug inhibitors. We further validated designated genes as direct miR16 targets by showing binding sites within the conserved 3' UTR and also within the mRNA coding region, thus indicating that the miRs may have many more possible targets than anticipated by conventional prediction methods. Conclusions: Using this loss-of-function system, which mimics the pleiotropic chronic effects of microRNA loss at the 13q chromosomal deletion, provides a valuable tool to investigate their function as tumor suppressor genes in MM pathogenesis, affecting multiple targets, and may represent a novel potential for therapeutic targeting in MM and other lymphoid malignancies. Disclosures: Munshi: Seattle Genetics, Inc.: Research Funding.

2000 ◽  
Vol 74 (20) ◽  
pp. 9479-9487 ◽  
Author(s):  
Justin Mostecki ◽  
Anne Halgren ◽  
Arash Radfar ◽  
Zohar Sachs ◽  
James Ravitz ◽  
...  

ABSTRACT In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including theInk4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived fromInk4a/Arf +/− mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1584
Author(s):  
Germán L. Vélez-Reyes ◽  
Nicholas Koes ◽  
Ji Hae Ryu ◽  
Gabriel Kaufmann ◽  
Mariah Berner ◽  
...  

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, genomically complex, have soft tissue sarcomas, and are derived from the Schwann cell lineage. Patients with neurofibromatosis type 1 syndrome (NF1), an autosomal dominant tumor predisposition syndrome, are at a high risk for MPNSTs, which usually develop from pre-existing benign Schwann cell tumors called plexiform neurofibromas. NF1 is characterized by loss-of-function mutations in the NF1 gene, which encode neurofibromin, a Ras GTPase activating protein (GAP) and negative regulator of RasGTP-dependent signaling. In addition to bi-allelic loss of NF1, other known tumor suppressor genes include TP53, CDKN2A, SUZ12, and EED, all of which are often inactivated in the process of MPNST growth. A sleeping beauty (SB) transposon-based genetic screen for high-grade Schwann cell tumors in mice, and comparative genomics, implicated Wnt/β-catenin, PI3K-AKT-mTOR, and other pathways in MPNST development and progression. We endeavored to more systematically test genes and pathways implicated by our SB screen in mice, i.e., in a human immortalized Schwann cell-based model and a human MPNST cell line, using CRISPR/Cas9 technology. We individually induced loss-of-function mutations in 103 tumor suppressor genes (TSG) and oncogene candidates. We assessed anchorage-independent growth, transwell migration, and for a subset of genes, tumor formation in vivo. When tested in a loss-of-function fashion, about 60% of all TSG candidates resulted in the transformation of immortalized human Schwann cells, whereas 30% of oncogene candidates resulted in growth arrest in a MPNST cell line. Individual loss-of-function mutations in the TAOK1, GDI2, NF1, and APC genes resulted in transformation of immortalized human Schwann cells and tumor formation in a xenograft model. Moreover, the loss of all four of these genes resulted in activation of Hippo/Yes Activated Protein (YAP) signaling. By combining SB transposon mutagenesis and CRISPR/Cas9 screening, we established a useful pipeline for the validation of MPNST pathways and genes. Our results suggest that the functional genetic landscape of human MPNST is complex and implicate the Hippo/YAP pathway in the transformation of neurofibromas. It is thus imperative to functionally validate individual cancer genes and pathways using human cell-based models, to determinate their role in different stages of MPNST development, growth, and/or metastasis.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jorge Muñoz ◽  
María del Mar Inda ◽  
Paula Lázcoz ◽  
Idoya Zazpe ◽  
Xing Fan ◽  
...  

While allelic losses and mutations of tumor suppressor genes implicated in the etiology of astrocytoma have been widely assessed, the role of epigenetics is still a matter of study. We analyzed the frequency of promoter hypermethylation by methylation-specific PCR (MSP) in five tumor suppressor genes (PTEN, MGMT, RASSF1A, p14ARF, and p16INK4A), in astrocytoma samples and cell lines. RASSF1A was the most frequently hypermethylated gene in all grades of astrocytoma samples, in cell lines, and in adult secondary GBM. It was followed by MGMT. PTEN showed a slight methylation signal in only one GBM and one pilocytic astrocytoma, and in two cell lines; while p14ARF and p16INK4A did not show any evidence of methylation in primary tumors or cell lines. In pediatric GBM, RASSF1A was again the most frequently altered gene, followed by MGMT; PTEN, p14 and p16 showed no alterations. Lack or reduced expression of RASSF1A in cell lines was correlated with the presence of methylation. RASSF1A promoter hypermethylation might be used as a diagnostic marker for secondary GBM and pediatric GBM. Promoter hypermethylation might not be an important inactivation mechanism in other genes like PTEN, p14ARF and p16INK4A, in which other alterations (mutations, homozygous deletions) are prevalent.


Neurology ◽  
1998 ◽  
Vol 51 (5) ◽  
pp. 1250-1255 ◽  
Author(s):  
J. Fueyo ◽  
C. Gomez-Manzano ◽  
W. K. Alfred Yung ◽  
A. P. Kyritsis

2013 ◽  
Vol 03 (04) ◽  
pp. 285-293 ◽  
Author(s):  
Gan Wang ◽  
Le Wang ◽  
Vanitha Bhoopalan ◽  
Yue Xi ◽  
Deepak K. Bhalla ◽  
...  

1992 ◽  
Vol 12 (3) ◽  
pp. 1387-1395
Author(s):  
M C Goyette ◽  
K Cho ◽  
C L Fasching ◽  
D B Levy ◽  
K W Kinzler ◽  
...  

Carcinogenesis is a multistage process that has been characterized both by the activation of cellular oncogenes and by the loss of function of tumor suppressor genes. Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. Such chromosome loss is often suggestive of the deletion or loss of function of tumor suppressor genes. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further our understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, we have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. Hybrids containing chromosome 18 are morphologically similar to the parental line, whereas those containing chromosome 5 are morphologically distinct from the parental cell line, being small, polygonal, and tightly packed. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Introduction of chromosome 5 had little to no effect on responsiveness, whereas transfer ot chromosome 18 restored responsiveness to some degree. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.


1995 ◽  
Vol 23 (5) ◽  
pp. 293-300 ◽  
Author(s):  
M.-O. Grimm ◽  
B. J�rgens ◽  
W. A. Schulz ◽  
K. Decken ◽  
D. Makri ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 4949-4958 ◽  
Author(s):  
A Hangaishi ◽  
S Ogawa ◽  
N Imamura ◽  
S Miyawaki ◽  
Y Miura ◽  
...  

It is now evident that the cell cycle machinery has a variety of elements negatively regulating cell cycle progression. However, among these negative regulators in cell cycle control, only 4 have been shown to be consistently involved in the development of human cancers as tumor suppressors: Rb (Retinoblastoma susceptibility protein), p53, and two recently identified cyclin-dependent kinase inhibitors, p16INK4A/MTS1 and p15INK4B/MTS2. Because there are functional interrelations among these negative regulators in the cell cycle machinery, it is particularly interesting to investigate the multiplicity of inactivations of these tumor suppressors in human cancers, including leukemias/lymphomas. To address this point, we examined inactivations of these four genes in primary lymphoid malignancies by Southern blot and polymerase chain reaction-single- strand conformation polymorphism analyses. We also analyzed Rb protein expression by Western blot analysis. The p16INK4A and p15INK4B genes were homozygously deleted in 45 and 42 of 230 lymphoid tumor specimens, respectively. Inactivations of the Rb and p53 genes were 27 of 91 and 9 of 173 specimens, respectively. Forty-one (45.1%) of 91 samples examined for inactivations of all four tumor suppressors had one or more abnormalities of these four tumor-suppressor genes, indicating that dysregulation of cell cycle control is important for tumor development. Statistical analysis of interrelations among impairments of these four genes indicated that inactivations of the individual tumor-suppressor genes might occur almost independently. In some patients, disruptions of multiple tumor-suppressor genes occurred; 4 cases with p16INK4A, p15INK4B, and Rb inactivations; 2 cases with p16INK4A, p15INK4B, and p53 inactivations; and 1 case with Rb and p53 inactivations. It is suggested that disruptions of multiple tumor suppressors in a tumor cell confer an additional growth advantage on the tumor.


Sign in / Sign up

Export Citation Format

Share Document