Anti-CD20 Antibody GA101 in Combination with Chemotherapy or Flavopiridol in Mantle Cell Lymphoma.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4781-4781
Author(s):  
Daniel A. Heinrich ◽  
Christian Klein ◽  
Kristina Decheva ◽  
Marc Weinkauf ◽  
Grit Hutter ◽  
...  

Abstract Abstract 4781 Background Mantle cell lymphoma (MCL) responds only transiently to conventional chemotherapy resulting in a dismal long-term prognosis. At a molecular level it is characterised by the chromosomal translocation t(11;14)(q13;q32), which leads to constitutive over-expression of the cell cycle regulatory protein cyclin D1. GA101 is a third generation, glycoengineered type II IgG1 anti-CD20 monoclonal antibody with superior direct cell death induction by targeting a type II epitope and enhanced antibody dependent cellular cytotoxicity (ADCC). High efficacy in lymphoma cell lines has led to combination experiments with various chemotherapeutic compounds or the CDK-inhibitor Flavopiridol. Methods Using a MCL cell line panel (Granta-519, HBL-2, Jeko-1, Rec-1 and Z-138) and a Diffuse Large B-Cell Lymphoma cell line (Karpas-422) we determined the effect of GA101 (1 μg/ml) monotherapy as well as in combination with Fludarabine (0,25 μg/ml), Bendamustine (5 μg/ml), Mitoxantrone (0,25 and 0,5 μg/ml) and Flavopiridol (100nM) on cell proliferation and viability. Trypan-blue exclusion tests were used to analyze cell viability at 0h, 24h, 48h and 72h. The panel of MCL cell lines was treated to determine potential synergism of agent combinations. Accordingly, fractional product was calculated: synergism > 0,1; additive effect -0,1<x<0,1; antagonism < -0,1. Results After mono-exposure with GA101 (1 μg/ml), Granta-519 and Rec-1 showed the highest sensitivity (Granta: 65-75% cell reduction, Rec-1: 30-45%). Intermediate results were achieved for HBL-2 (20-30%), Z-138 and Karpas-422 (10-15%), Jeko-1 (5%). Fludarabine alone resulted in a 20-40% cell reduction. Bendamustine showed a higher efficacy in Jeko-1, Rec-1 and Z-138 (40-90%) than in Granta-519, Karpas-422 and HBL-2 (10%). Mitoxantrone treatment demonstrated a high impact on all cell lines (80-95% cell reduction). Flavopiridol induced a 65-85% cell reduction in Jeko-1, Rec-1 and Karpas-422in comparison to 30-45% in Granta-519, HBL-2 and Z-138. Additional experiments showed additive effects of all GA101 combinations resulting in 40-80% cell reduction (Fludarabine), 30-90% (Bendamustine), 85-95% (Mitoxantrone) and 60-80% (Flavopiridol). Conclusions These in vitro results demonstrate that the anti-CD20 monoclonal antibody GA101 alone or in combination with various chemotherapeutical compounds or the CDK-inhibitor (Flavopiridol) show a promising efficacy in MCL cell lines (additive in combination), supporting the clinical evaluation of such an innovative immuno-chemotherapy in mantle cell lymphoma. Disclosures: Klein: Roche (Glycart): Employment, Equity Ownership, Patents & Royalties. Weinkauf:Lilly Deutschland GmbH: Research Funding. Hutter:Lilly Deutschland GmbH: Research Funding. Zimmermann:Lilly Deutschland GmbH: Research Funding. Dreyling:Roche: Honoraria, Research Funding.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2704-2704
Author(s):  
Daniel A. Heinrich ◽  
Christian Klein ◽  
Kristina Decheva ◽  
Marc Weinkauf ◽  
Grit Hutter ◽  
...  

Abstract Abstract 2704 Poster Board II-680 Background: Mantle cell lymphoma (MCL) is characterized by a poor long-term prognosis with a median survival of 3–5 years. Type I anti-CD20 antibody rituximab has demonstrated a clear anti-proliferative effect in MCL and achieves increased response rates in combination with chemotherapy. GA101, a third-generation IgG1 anti-CD20 antibody displays improved ADCC and superior direct cell death induction by virtue of glycoengineering compared to rituximab and its targeting a type II epitope on CD20, respectively. Methods: Using a panel of MCL cell lines (Rec-1, HBL-2, Jeko-1, Granta-519, JVM-2 and Z-138) we determined the effect of GA101 alone as well as in combination with rituximab on cell viability and proliferation. Karpas-422 (Diffuse Large B-Cell Lymphoma) was used as a control cell line. MCL and Karpas-422 cells were treated with GA101 or rituximab at concentrations of 1 – 20μg/ml and rituximab. Cell viability was analyzed by trypan-blue exclusion tests at 0h, 24h, 48h and 72h. The panel of MCL cell lines and Karpas-422 were then treated with GA101 and rituximab each at 1 and 10 μg/ml to determine potential synergism of antibody combinations. Accordingly, a fractional product calculation was performed: synergism > 0,1; antagonism < −0,1. In addition, Western-blot and RNA-array-analyses were performed to elucidate potential intra-cellular downstream pathway mechanisms. Results: After mono-exposure with GA101 (1 μg/ml), Granta-519 and Rec-1 showed the highest sensitivity (65–75% cell reduction in Granta-519 and 35–40% in Rec-1). Intermediate results were gained for Z-138, HBL-2, Jeko-1 and JVM-2 and Karpas-422 (15–20%). rituximab mono-exposure at 12,5 μg/ml showed a 25% reduction of cell count in Granta-519, 20% in HBL-2 and < 5% in Rec-1, Jeko-1 and Z-138. Combination experiments suggested the competitive binding of the two antibodies. Thus, GA101 plus rituximab combination experiments resulted in a lower cytotoxicity than GA101 alone, according to fractional product calculations. Conclusions: Although GA101 is competitively displaced by rituximab, GA101 demonstrates higher efficacy in MCL cell lines than rituximab, even at a more than 10-fold lower concentration. Currently RNA-array- and Western blot analysis are being performed to identify the critical pathways responsible for the superior cytotoxicity of GA101. Disclosures: Klein: Discovery Oncology, Roche Diagnostics GmbH: Employment. Weinkauf:Lilly Deutschland GmbH: Research Funding. Hutter:Lilly Deutschland GmbH: Research Funding. Zimmermann:Lilly Deutschland GmbH: Research Funding. Dreyling:Roche: Honoraria, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3980-3980 ◽  
Author(s):  
Kathryn Kolibaba ◽  
John M. Burke ◽  
Heather D. Brooks ◽  
Daruka Mahadevan ◽  
Jason Melear ◽  
...  

Abstract Introduction: Ublituximab (UTX) is a novel, chimeric monoclonal antibody (mAb) which targets a unique epitope on the CD20 antigen and has been glycoengineered to enhance affinity for all variants of FcγRIIIa receptors, demonstrating greater ADCC than rituximab and ofatumumab. In patients (pts) with rel/ref CLL, the combination of UTX with ibrutinib was well-tolerated and highly active demonstrating an 88% ORR (95% ORR in high-risk CLL) with responses attained rapidly (median time to iwCLL response of 8 weeks). Ibrutinib has demonstrated single agent activity in Mantle Cell Lymphoma (MCL), achieving a 68% ORR (21% CR) in a single arm trial in relapsed or refractory patients (Wang et al, NEJM 2013). Herein we report on the first combination of ibrutinib with a glycoengineered anti-CD20 mAb, UTX, in patients with Mantle Cell Lymphoma (MCL). Methods: Eligible patients had rel/ref MCL with an ECOG PS < 3. Prior ibrutinib treatment was permitted. UTX (900 mg) was administered on Days 1, 8, and 15 in Cycle 1 followed by Day 1 of Cycles 2 - 6. Ibrutinib was started on Day 1 and continued daily at 560 mg. Following Cycle 6, patients came off study but could remain on ibrutinib. Primary endpoints were safety and ORR with an emphasis on early activity with response assessments by CT scan scheduled prior to cycles 3 and 6 only (criteria per Cheson 2007). Results: 15 patients were enrolled: 13 M/2 F, median age 71 yr (range 55-80), ECOG 0/1: 9/6, median prior Tx = 3 (range 1-8), 53% with ≥ 2 prior anti-CD20 therapies, 40% prior bortezomib. Gr 3/4 AE's occurring in at least 5% of patients and at least possibly related to UTX and/or ibrutinib included: neutropenia (13%), fatigue (7%), rash (7%) and atrial fibrillation (7%). Ibrutinib was dose reduced due to an AE in 1 patient (rash) and discontinued in 1 patient due to atrial fibrillation. No UTX dose reductions occurred. All 15 pts are evaluable for response with best response to treatment as follows: 87% (13/15) ORR with 33% (5/15) Complete Response. Three of the CR's occurred at week 8. Of the two patients not achieving an objective response, one patient was stable at first scan and came off treatment prior to second efficacy assessment (ibrutinib related A-Fib) and one patient progressed at first assessment. Responses generally improved from first to second assessment with median tumor reduction of 64% by week 8 and 82% by week 20. Conclusions: Ublituximab, a glycoengineered anti-CD20 mAb, in combination with ibrutinib is both well-tolerated and highly active in pts with rel/ref MCL. Response rate, depth of response, and time to response compare favorably to historical data with ibrutinib alone. A randomized phase 3 trial with ibrutinib +/- ublituximab is currently ongoing in high-risk CLL pts and future studies using this combination in MCL are being evaluated. Disclosures Kolibaba: Janssen: Research Funding; Novartis: Research Funding; Pharmacyclics: Research Funding; Seattle Genetics: Research Funding; Gilead: Consultancy, Honoraria, Research Funding; TG Therapeutics: Research Funding; GSK: Research Funding; Genentech: Research Funding; Cell Therapeutics: Research Funding; Celgene: Research Funding; Amgen: Research Funding; Amgen: Research Funding; Acerta: Research Funding. Burke:Gilead: Consultancy; Millenium/Takeda: Consultancy; Seattle Genetics, Inc.: Research Funding; Incyte: Consultancy; Janssen: Consultancy; TG Therapeutics: Other: Travel expenses. Farber:TG Therapeutics, Inc.: Research Funding. Fanning:Celgene and Millennium/Takeda: Speakers Bureau. Schreeder:TG Therapeutics, Inc: Research Funding. Boccia:Incyte Corporation: Honoraria. Sportelli:TG Therapeutics, Inc.: Employment, Equity Ownership. Miskin:TG Therapeutics, Inc.: Employment, Equity Ownership. Weiss:TG Therapeutics, Inc.: Employment, Equity Ownership. Sharman:Roche: Research Funding; Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Pharmacyclics: Consultancy, Honoraria, Research Funding; Calistoga: Honoraria; Janssen: Research Funding; TG Therapeutics, Inc.: Research Funding; Celgene Corporation: Consultancy, Research Funding.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 886-886 ◽  
Author(s):  
Lapo Alinari ◽  
Erin Hertlein ◽  
David M. Goldenberg ◽  
Rosa Lapalombella ◽  
Fengting Yan ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an incurable B-cell malignancy and patients with this disease have limited therapeutic options. Despite the success of Rituximab in treatment of B-cell malignancies, its use as a single agent or in combination with chemotherapy in MCL has demonstrated modest activity; thus, novel strategies are needed. CD74 is an integral membrane protein expressed on malignant B cells and implicated in promoting survival and growth, making it an attractive therapeutic target. The humanized anti-CD74 monoclonal antibody (mAb), Milatuzumab, (Immunomedics) has shown promising preclinical activity against several human B-cell lymphoma cell lines, but has not been studied in MCL. Since Rituximab and Milatuzumab target distinct antigens lacking known association, we explored a combination strategy with these mAbs in MCL cell lines, patient samples, and in a preclinical model of MCL. Flow cytometric analysis shows that the MCL cell lines Mino and JeKo, and MCL patient tumor cells, express abundant surface CD74 compared to the CD74-negative cell line, Jurkat. Incubation of Mino and JeKo cells with immobilized (goat anti-human IgG) Milatuzumab (5 μg/ml) resulted in mitochondrial depolarization and significant induction of apoptosis determined by Annexin V/PI and flow cytometry (apoptosis at 8hr=38.3±0.85% and 25.4±2.6%; 24hr=73.6±3.47% and 36±3.57%; 48hr=84.9±3.91% and 50.4±4.17%, respectively, compared to Trastuzumab (control). Expression of surviving cells from anti-CD74-treated MCL cells consistently demonstrated marked induction of surface CD74 (MFI 762) compared to control (MFI 6.1). Incubation with immobilized Rituximab (10 μg/ml) resulted in 39.5±2.5% and 37.1±8.35% apoptotic events at 8hr, 58.8±3.14%, 41.2±8.27% at 24hr, and 40.1±1.3% and 45.6±3.25% at 48hr, respectively. Combination treatment of Mino and JeKo cells with Milatuzumab and Rituximab led to significant enhancement in cell death, with 77.6±3.95% and 79.6±2.62% apoptosis at 8hr in Jeko and Mino cells (P=0.0008 and P=0.00004 vs. Milatuzumab alone; P=0.00015 and P=0.001 vs. Rituximab alone); 90.4±3.53% and 76.6±4.3% at 24hr, respectively (P=0.0042 and P=0.0002 vs. Milatuzumab, P=0.0003 and P=0.0027 vs. Rituximab alone); 92.8±0.77% and 85.6±2.62% at 48hr, respectively (P= 0.026 and P=0.0002 vs. Milatuzumab alone, P=0.0000005 and P=0.00008 compared to Rituximab alone, respectively). To examine the in vivo activity of Rituximab and Milatuzumab, a preclinical model of human MCL using the SCID (cb17 scid/scid) mouse depleted of NK cells with TMβ1 mAb (anti-murine IL2Rb) was used. In this model, intravenous injection of 40×106 JeKo cells results in disseminated MCL 3–4 weeks after engraftment. The primary end-point was survival, defined as the time to develop cachexia/wasting syndrome or hind limb paralysis. Mice were treated starting at day 17 postengraftment with intraperitoneal Trastuzumab mAb control (300 μg qod), Milatuzumab (300 μg qod), Rituximab (300 μg qod), or a combination of Milatuzumab and Rituximab. The mean survival for the combination-treated group was 55 days (95%CI:41, upper limit not reached as study was terminated at day 70), compared to 33 days for Trastuzumab-treated mice (95% CI:31,34), 35.5 days for the Milatuzumab-treated mice (95% CI:33,37), and 45 days for the Rituximab-treated mice (95%CI:30,46). The combination treatment prolonged survival of this group compared to Trastuzumab control (P=0.001), Milatuzumab (P=0.0006) and Rituximab (P=0.098). No overt toxicity from Milatuzumab or the combination regimen was noted. A confirmatory study with a larger group of mice and detailed mechanistic studies are now underway. These preliminary results provide justification for further evaluation of Milatuzumab and Rituximab in combination in MCL.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1660-1660 ◽  
Author(s):  
Isabel Tourais Esteves ◽  
Charles Dumontet ◽  
Stéphanie Herveau ◽  
Lina Reslan ◽  
Frédérique Brune ◽  
...  

Abstract Abstract 1660 LFB-R603, a next generation anti-CD20 antibody currently in clinical development, is characterized by a specific glycosylation pattern containing a high percentage of non fucosylated antibodies molecules at the Fc site. This pattern of glycosylation increases the affinity of antibodies for human FcγRIIIa, resulting in an increased antibody dependent cell-mediated cytotoxicity (ADCC) by human FcγRIIIa-expressing effector cells. This antibody is currently in a phase I clinical trial in B-CLL patients and its use is planned to be expanded to other non-hodgkin's lymphomas (NHL) such as follicular and mantle cell lymphoma, as a single agent and in combination with chemotherapeutic agents. The antitumor efficacy of LFB-R603 was studied in comparison with rituximab in combination with conventional chemotherapeutic agents in two models of NHL developed in immuno-deficient mice. The RL cell line, derived from a patient with follicular lymphoma (FL), was xenografted in mice by subcutaneous injection. Tumor-bearing mice were treated intravenously during 4 weeks with the anti-CD20 antibodies used alone or in combination with suboptimal doses of cyclophosphamide 50 mg/kg or bendamustine 30 mg/kg. LFB-R603 and rituximab displayed a dose-related antitumor activity. The tumor growth inhibition (TGI) was at day 30, 64% at 10 mg/kg, 84% at 30 mg/kg and 100% at 100 mg/kg for LFB-R603 compared with the untreated-group. For rituximab, the TGI was 84% at 30 mg/kg and 99% at 100 mg/kg. More interestingly, LFB-R603 at 100 mg/kg dose showed a significantly superior antitumor activity as a delay of 21 days in tumor growth was observed compared to rituximab (p=0.00001). The combination of LFB-R603 or rituximab at 60 mg/kg with cyclophosphamide enhanced the effect observed with the antileukemic agent only and the additive effect was similar for the two antibodies as a delay of 13 days in tumor growth was observed for both combination-treated groups compared with the cyclophosphamide-treated group (p=0.00001). However, LFB-R603 displayed a significant higher antitumor activity against RL xenografts than rituximab when combined with bendamustine as a tumor growth delay of 7 days was observed between the two treated-groups (p=0.00001). The NCEB cell line, derived from a patient with mantle cell lymphoma (MCL), was xenografted in mice by subcutaneous injection. In this model, LFB-R603 and rituximab injected once weekly up to 3 weeks displayed a dose-related TGI activity. A higher activity of LFB-R603 compared to rituximab was observed at all tested doses (3, 10, 30 and 60 mg/kg). TGI values at day 51 were 91% for LFB-R603 at 3 mg/kg versus 40% for rituximab, 88% for LFB-R603 at 10 mg/kg versus 57 % for rituximab and 100% for LFB-R603 at 30 and 60 mg/kg versus 66% for rituximab when compared with untreated-group. In conclusion, LFB-R603 displayed a greater antitumor activity as compared to rituximab in two different non-clinical in vivo models of NHL, namely follicular and mantle cell lymphoma. Moreover, additive effects were obtained when LFB-R603 was combined with chemotherapeutic agents such as cyclophosphamide and bendamustine in the FL model. Disclosures: Tourais Esteves: LFB Biotechnologies: Employment. Dumontet:LFB Biotechnologies: Research Funding. Herveau:LFB Biotechnologies: Research Funding. Reslan:LFB Biotechnologies: Research Funding. Brune:LFB Biotechnologies: Employment. Van Overtvelt:LFB Biotechnologies: Employment. Salcedo:LFB Biotechnologies: Employment. Fournès:LFB Biotechnologies: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 436-436 ◽  
Author(s):  
Robert Kridel ◽  
Barbara Meissner ◽  
Sanja Rogic ◽  
Merrill Boyle ◽  
Adele Telenius ◽  
...  

Abstract Abstract 436 Background: Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma that is characterized by the hallmark t(11;14)(q13;q32) translocation, as well as a high number of secondary chromosomal alterations. Further, a small number of genes such as TP53, ATM and CCND1 have been reported to be recurrently mutated in MCL, but do not fully explain the biology and do not adequately account for the wide spectrum of clinical manifestations, response to treatment and prognosis. The aim of this study was to discover new somatic mutations that could contribute to our understanding of the pathogenesis of MCL. Methods: In our discovery cohort, we sequenced the transcriptomes of 18 clinical samples (11 diagnostic and 7 progression biopsies) and 2 mantle cell lymphoma-derived cell lines (Mino and Jeko-1). For this purpose, whole transcriptome shotgun sequencing was performed on RNA extracted from fresh frozen tissue. We assembled an extension cohort of 103 diagnostic patient samples and 4 additional cell lines (Rec-1, Z-138, Maver-1, JVM-2), and performed Sanger sequencing of NOTCH1 exons 26, 27 and 34 on genomic DNA. We further exposed the 6 cell lines to 1 μM of the γ-secretase inhibitor XXI (compound E) for 7 days and measured cellular proliferation with an EdU incorporation assay. Survival analysis was carried out in the 113 patients with diagnostic biopsies and available outcome data. Results: NOTCH1 mutations were found in 14 out of 121 patient samples (11.6%) and in 2 out of 6 cell lines, Mino and Rec-1 (33.3%). The majority of these mutations (12 out of 14) lie in exon 34 that encodes the PEST domain of NOTCH1 and consist of either small frameshift-causing indels (10 cases) or nonsense mutations (2 cases). These mutations are predicted to cause truncations of the C-terminal PEST domain. To gain further insight into functional relevance, we treated 6 cell lines with compound E, an inhibitor of the γ-secretase complex that plays a critical role in the release of the intracellular domain of NOTCH1 after ligand-induced activation. In Rec-1, that harbours a NOTCH1 mutation, we observed a significant decrease in proliferation (mean percentage of cells in culture incorporating EdU decreasing from 47.5% to 1.4%, p<.001). No effect of compound E was observed in Mino, the other cell line with a NOTCH1 mutation, nor in the 4 cell lines that are wild type for NOTCH1. Outcome correlation analysis showed that NOTCH1 mutations are associated with poor overall survival (1.56 versus 3.86 years respectively, p=.001), but not with significantly shortened progression-free survival (0.88 versus 1.73 years respectively, p=.07). Discussion: We have identified recurrent mutations in NOTCH1 in a subset of patients with MCL (11.6%). The frequency and the pattern of mutations are strikingly similar to what has recently been reported in chronic lymphocytic leukemia, the other major CD5 positive B-cell malignancy (Nature, 2011 Jun 5, 475:101–105 and J Exp Med, 2011 Jul 4, 208:1389–1401). NOTCH1 mutations are associated with adverse prognosis as evidenced by shortened overall survival. This latter finding, however, should ideally be validated in a larger and uniformly treated cohort. Finally, the sensitivity of the Rec-1 cell line to compound E suggests that NOTCH1 mutations could serve as the target for tailored therapy in mantle cell lymphoma. Disclosures: Sehn: Roche/Genentech: Consultancy, Honoraria, Research Funding. Connors:Roche: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3066-3066 ◽  
Author(s):  
Luigi Scotto ◽  
Kelly Zullo ◽  
Xavier Jirau Serrano ◽  
Laura K Fogli ◽  
Owen A. O'Connor

Abstract Mantle cell lymphoma (MCL) is a disease characterized by gross cell cycle dysregulation driven by the constitutive overexpression of cyclin D1. The identification of a “proliferation signature” in MCL, underscores the necessity of new therapeutic approaches aimed at lowering the proliferative signature of the disease, theoretically shifting the prognostic features of the disease. Romidepsin, an HDAC inhibitor (HDACi) approved for the treatment of relapsed T-cell lymphoma, is thought to induce cell cycle arrest and apoptosis. Central to the block of cell proliferation is the up-regulation of the cdk inhibitor p21Cip1/Waf1. However up-regulation of p21Cip1/Waf1 has also been shown to reduce sensitivity to romidepsin. HDACi activates p21Cip1/Waf1 expression via ATM and KU60019, a specific ATM inhibitor, has been shown to decrease the p21Cip1/Waf1 protein levels in a concentration dependent manner. We sought to explore the effect of the combination of romidepsin and KU60019 in inducing cell death in MCL. Analysis of romidepsin treated Jeko-1 cell extracts showed a marked effect on the expression of proteins involved in cell cycle regulation. Decrease expression of Emi1, a mitotic regulator required for the accumulation of the APC/C substrates was observed. Emi1 is also responsible for the stability of the E3 ubiquitin ligase Skp2 that specifically recognizes and promotes the degradation of phosphorylated cdk inhibitor p27. However, decrease in Emi1 protein levels, upon addition of romidepsin, was not followed by an increased expression of the cdk inhibitor p27. On the other end, increased expression of the cdk inhibitor p21Cip1/Waf1, was a common feature of all romidepsin treated MCL lines analyzed. Cell cycle analysis via Fluorescent Activated Cell Sorting (FACS) of romidepsin treated Jeko-1 cells showed an accumulation of romidepsin treated cells in the G2/M phase when compared to the control suggesting a p21Cip1/Waf1 induced cell cycle arrest. For all cytotoxicity assays, luminescent cell viability was performed using CellTiter-GloTM followed by acquisition on a Biotek Synergy HT and IC50s calculated using the Calcusyn software. Drug: drug interactions were analyzed using the calculation of the relative risk ratios (RRR). Synergy analyses were performed using Jeko-1, Maver-1 and Z-138 cells treated with different concentrations of romidepsin corresponding to IC10-20 in combination with KU60019 at a concentration of 2.5, 5.0, 7.5 and 15 umol/L for 24, 48 and 72 hours. A synergistic cytotoxic effect was observed in all MCL cell lines when the HDACi was combined with KU60019 throughout the range of all concentrations. The RRR analysis showed a strong synergism at 48 and 72 hours in virtually all combinations of HDACi and KU60019 in all three cell lines. The results of drug:drug combination in two of the three cell lines are shown below. Protein expression analysis of Jeko-1 and Maver-1cells treated with single agents or combinations for 48 hours revealed changes in a host of proteins known to be involved in cell cycle control and apoptosis. The increased p21 protein expression upon addition of romidepsin, was not observed when the romidepsin treatment was combined with the KU60019. Increased activation of the programmed cell death proteins Caspase 8, induced by Fas, and Caspase 3 was observed upon combinations of the single agents in all three cell lines, resulting in an increased cleavage of Poly (ADP-ribose) polymerase (PARP-1). Finally, the abundance of the anti-apoptotic proteins Bcl-XL and BCL-2 showed a significant decrease after treatment with romidepsin plus increase concentrations of KU60019 when compared with their abundance in the presence of the single agents. Cell cycle analysis of Jeko-1 cells treated for 24 hours with single agents and combination suggests that the increased apoptosis is the result of inhibition of the p21Cip1/Waf1 induced G2/M cell cycle arrest by KU60019. Overall, these data demonstrated that the combination of romidepsin and KU60019 was synergistically effective in inhibiting the in vitro growth of the mantle cell lymphoma lines. Jeko-1 Maver-1 Disclosures: O'Connor: Celgene: Consultancy, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4100-4100
Author(s):  
Junya Kuroda ◽  
Taku Tsukamoto ◽  
Shingo Nakahata ◽  
Kazuhiro Morishita ◽  
Ryuichi Sato ◽  
...  

Abstract Mantle cell lymphoma (MCL) has been mostly incurable, and there is an urgent need to identify targetable molecules for development of a more effective treatment strategy. Bromodomain and extraterminal domain (BET) proteins associate with acetylated histones and facilitate transcription of target genes, and bromodomain-containing 4 (BRD4), a member of BET proteins, recruits the P-TEFb complex to genomic lesions in chromatin and thereby activates RNA Pol II at specific promoter sites of target genes. In addition, super-enhancers have been recognized as regulatory regions with a high level of acetylated histones, mediator complexes and BRD4, and super-enhancers in cancer cells are enriched at oncogenes. Recent studies have shown that BRD4 promotes expression of pivotal molecules in disease development, maintenance and progression in various cancers, including lymphoma. Given, we in this study examined the effect of BRD4 inhibition on human MCL-derived cell lines, Jeko-1, JVM-2, MINO and Z138, and performed broad screening of BRD4-regulated molecules using genome-wide approaches to identify therapeutic targets for MCL. As the results, treatment with a BRD4 inhibitor I-BET151 for 72 h showed a dose-dependent inhibitory effect on cell proliferation in all four cell lines, with half maximal inhibitory concentrations (IC50s) of 15.6 nM, 3.6 nM, 2.6 nM and 3.0 nM in Jeko-1 cells, JVM2 cells, MINO cells and Z138 cells, respectively, which was accompanied by G1/S cell cycle arrest and the induction of apoptosis. Next, we performed comprehensive gene expression profile (GEP) analysis for JVM2 and Z138 cells with or without I-BET151 treatment, and BRD4 chromatin immunoprecipitation sequencing (ChIP-Seq) in JVM2 cells treated with 10 nM I-BET151 or DMSO. Accordingly, GEP analyses revealed that more than 600 genes were commonly upregulated by more than 1.5-fold and downregulated by less than 0.67-fold, respectively, in JVM2 and Z138 cells treated by I-BET151, while ChIP-Seq showed that 7988 BRD4-binding regions were dysregulated by I-BET151, with most of these sites in enhancer regions, and 547 BRD4-binding regions were characterized as super-enhancers. Integrated analysis using the Reactome Pathway Database and the results of GEP and ChIP-Seq showed that a series of genes involved in the B cell receptor (BCR) signaling pathway and IKZF-MYC axis are regulated by BRD4 in MCL cells. To confirm whether each BRD4 target contributes to survival and proliferation of MCL cells, we focused on several candidate targets: the BCR pathway, IKZF and MYB. However, ibrutinib, a Bruton kinase inhibitor, suppressed cell growth in only two of the four cell lines (MINO and JVM2) in a dose-dependent manner, while lenalidomide, an inhibitor of the IKZF family, did not affect cell survival, despite its potency in decreasing IKZF1 and IKZF3 proteins. MYB silencing using shMYB did not decrease cell proliferation in any of the four MCL cell lines. In conclusion, our study disclosed that BRD4 regulates transcription of multiple genes by binding to enhancer region, partly involving super-enhancers and multiple known pathways, such as BCR signaling and the IKZF-MYC axis, which play essential roles in survival of MCL cells. While the efficacy of single targeting of BCR-signaling, IKZF, or MYB was limited, I-BET151 concomitantly inactivated the BCR pathway and IKZF and had a high growth inhibitory efficacy in MCL cells. These results suggest that simultaneous targeting of multiple molecules involved in the BCR pathway and IKZF-MYC axis may overcome resistance to ibrutinib and/or lenalidomide in MCL, and that BRD4 inhibitors are promising candidates for MCL treatment. Disclosures Kuroda: Chugai Pharma: Honoraria, Research Funding. Taniwaki:Bristol-Myers Squibb: Research Funding; Chugai Pharmaceutical Co., Ltd.,: Research Funding; Astellas Pharma Inc,: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 290-290 ◽  
Author(s):  
Yang Liu ◽  
Taylor Bell ◽  
Hui Zhang ◽  
Yuting Sun ◽  
Carrie J Li ◽  
...  

Abstract Background: Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy that is initially responsive but ultimately relapses to frontline therapy. Ibrutinib, a first-in-class, once-daily, oral covalent inhibitor of Bruton's tyrosine kinase (BTK) has achieved 68% of overall response rate in relapsed/refractory mantle cell lymphoma (MCL) patients. However, the vast majority of MCL patients experience disease progression, demonstrating that standard-of-care approaches are failing and that a means for targeting ibrutinib resistant MCL is clinically needed. Our hypothesis is that the ibrutinib-resistant MCL may rely on the mitochondrial oxidative phosphorylation (OXPHOS) pathway to produce energy for tumor growth. In this study, we investigated the effects of IACS-010759, a small molecule mitochondrial complex I inhibitor discovered in MD Anderson Cancer Center which can block the OXPHOS pathway, to overcome ibrutinib resistance in MCL in vitro and in a patient-derived xenograft (PDX) model. Methods: The OXPHOS metabolic pathways were investigated by RNASeq in a panel of ibrutinib-sensitive and -resistant MCL samples. Cell growth inhibition assays were tested after 72-hour treatment with IACS-010759 in ibrutinib-resistant MCL cell lines, Z-138 and Maver-1, and ibrutinib-sensitive MCL cell lines, Rec-1, Mino, and Jeko-1, by CellTiter-Glo luminescent cell viability assay (Promega). Furthermore, an IBN-resistant MCL PDX model was established and the therapeutic effects and tolerability of IACS-010759 were investigated in the primary MCL-bearing PDX model. Results: We have done RNA sequencing (RNASeq) in 7 primary ibrutinib-resistant and 16 ibrutinib-sensitive MCL patient samples, and analyzed the data using Gene Set Enrichment Analysis (GSEA) software. The results demonstrated that the OXPHOS pathway was activated in the primary ibrutinib-resistant MCL cells but not ibrutinib-sensitive MCL cells. Based on the RNASeq data, we selected an OXPHOS inhibitor IACS-010759 to investigate its effects on both primary ibrutinib-resistant and ibrutinib-sensitive MCL cells in vitroand in PDX mice. IACS-010759 significantly inhibited cell proliferation in ibrutinib-resistant MCL cell lines, Z-138 and Maver-1, but not in ibrutinib-sensitive MCL cell lines, Rec-1, Mino, and Jeko-1, during a 72-hour incubation. Furthermore, the primary ibrutinib-resistant MCL PDX mice were administrated with 10 mg/kg IACS-10759 by oral gavage, for 28 days using a 5 on/2 off dosing schedule. Our data showed that IACS-010759 completely eradicated tumor growth in ibrutinib-resistant MCL PDX mice (n=5, p=0.045). All mice tolerated the treatment dose and no toxicity was found during 28 days of IACS-010759 treatment. Conclusions: The OXPHOS inhibitor IACS-010759 overcomes ibrutinib resistance both in vitro and in the PDX mouse model. The investigation of its mechanism-of-action is ongoing. IACS-010759 could have the potential for clinical use in ibrutinib-resistant relapsed/refractory MCL patients. Disclosures Wang: Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Asana BioSciences: Research Funding; Kite Pharma: Research Funding; Juno Therapeutics: Research Funding; Asana biosciences, Beigene, Celgene, Juno, Kite, Onyx, Pharmacyclics: Research Funding; Dava Oncology: Honoraria; BeiGene: Research Funding; Acerta: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1507-1507
Author(s):  
Daniela Steinbrecher ◽  
Felix Seyfried ◽  
Eugen Tausch ◽  
Johannes Bloehdorn ◽  
Billy Michael Chelliah Jebaraj ◽  
...  

Apoptosis is controlled by the expression levels and interplay of pro- and anti-apoptotic BCL-2 family proteins. The specific BCL-2 inhibitor Venetoclax (VEN) showed high efficiency in BCL-2 dependent cancers like chronic lymphocytic leukemia (CLL) or mantle cell lymphoma (MCL). Despite its high efficiency in CLL and MCL, refractory disease can develop. BCL-2 mutations have been described to mediate resistance in CLL cases, however these mutations are only found in a proportion of VEN resistant cases and in a fraction of cells. In order to design alternative therapeutic strategies to overcome drug resistance, a better understanding of the mechanisms mediating resistance to VEN is necessary. VEN-resistant (VEN-R) MCL cell lines (MINO and MAVER-1) were generated by chronic exposure to increasing amounts of VEN (up to 3µM). A significant and stable upregulation of BCL-XL mRNA and protein was seen in the MINO and MAVER-1 resistant cell lines (2 and 4 fold increase in mRNA and 2.6 and 4.5 fold increase in protein, respectively). We used BH3 profiling in combination with VEN treatment for 4h to investigate the differences in anti- and pro-apoptotic signaling in parental and VEN-R cell lines. Additionally, sensitivity to VEN was restored upon shRNA-mediated knockdown of BCL-XL. These results confirmed the importance of BCL-XL upregulation in mediating resistance. Furthermore, we did not detect mutations in BCL-2 upon resistance to VEN via targeted NGS, which is in contrast to results obtained in VEN-R CLL patients (Blombery et al., Cancer Discovery 2019 and Tausch et al., Hematologica 2019). However, the results obtained by dynamic BH3-profiling (VEN treatment in combination with BH3 Profiling) suggest that increase in BCL-XL is most likely not the only alteration necessary to render cells resistant to VEN. In addition, reduced activation of pro-apoptotic proteins like BAX and BAK might contribute to resistance to VEN. In order, to investigate if VEN resistance can be overcome by drug mediated inhibition of BCL-XL we used different therapeutic approaches. Combinational treatment with the BCL-XL inhibitor A-1331852 and VEN or the single treatment with Navitoclax, a combined inhibitor of BCL-2, BCL-W and BCL-XL for 48h reduced cell viability in VEN-R MINO and MAVER-1 cell lines. Furthermore, BDA-366, a BH4 domain BCL-2 inhibitor effectively reduced the cell viability after 48h of treatment in a dose dependent manner in both parental and VEN-R cell lines. The binding of BDA-366 to the anti-apoptotic BCL-2 protein leads to a conformational change into a pro-apoptotic molecule by the exposure of the BH3 domain of the protein. Despite mediating apoptosis in a TP53-independent manner, VEN treatment in CLL has been associated with inferior outcome in the presence of TP53 aberrations. In order to address the role of TP53 dysfunction in mediating resistance to VEN, we generated p53 knock out cell lines (N=2) by CRISPR/Cas9 gene editing. This significantly decreased the sensitivity to VEN compared to p53 WT cell lines. Additionally, the sensitivity to BDA-366 was significantly reduced upon knockout of p53, suggesting an interference of p53 downstream of BCL-2. Overall, VEN resistance is mediated by a permanent increase in BCL-XL mRNA and protein level in MCL. Importantly, BDA-366, which converts the anti-apoptotic BCL-2 molecule into a BAX-like death molecule, could be a potential alternative treatment strategy for BCL-2 dependent cancers even when resistant to VEN. Despite mediating apoptosis in a p53 independent manner, VEN seems to be less effective in p53 deficient cells, underlining the importance of further investigations of treatment combinations in these groups. Disclosures Tausch: Roche: Consultancy, Honoraria, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: travel support, Speakers Bureau. Döhner:AbbVie, Agios, Amgen, Astellas, Astex, Celator, Janssen, Jazz, Seattle Genetics: Consultancy, Honoraria; AROG, Bristol Myers Squibb, Pfizer: Research Funding; Celgene, Novartis, Sunesis: Honoraria, Research Funding. Stilgenbauer:Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Hoffmann La-Roche: Consultancy, Honoraria, Research Funding, Speakers Bureau; Pharmacyclics: Other: Travel support; Amgen: Consultancy, Honoraria, Research Funding, Speakers Bureau; AbbVie: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; GSK: Consultancy, Honoraria, Research Funding, Speakers Bureau. Schneider:Celgene: Other: travel grant.


Sign in / Sign up

Export Citation Format

Share Document