Defining the Mechanism of Etoposide Activity in Hemophagocytic Lymphohistiocytosis Using a Murine Disease Model.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 714-714
Author(s):  
Theodore S. Johnson ◽  
Catherine E. Terrell ◽  
Michael B. Jordan

Abstract Abstract 714 Introduction: Hemophagocytic lymphohistiocytosis (HLH) is a rare multisystem hyperinflammatory syndrome associated with immune dysregulation due to genetic or acquired defects in cytotoxic natural killer cell and CD8 T cell function. Although the mechanism of activity is currently unknown, etoposide has been the mainstay of HLH therapy during the past two decades, since its initial empiric use. Jordan, et al (Blood 2004;104(3):735-43) demonstrated that the clinical and laboratory manifestations of HLH are recapitulated in perforin-deficient (prf−/−) mice infected with lymphocytic choriomeningitis virus (LCMV). In this animal model, ineffective cytotoxic T effector cells fail to down-modulate stimulatory signals provided by antigen presenting cells (APCs). Excessive T cell stimulation leads to massive cytokine production which drives systemic macrophage activation resulting in HLH-like disease pathology. Thus, at least three critical events occur in the pathogenesis of HLH: 1) Abnormal increase in antigen presentation, 2) Abnormal increase in CD8 T cell activation and cytokine secretion, and 3) Pathological macrophage activation and hemophagocytosis. We hypothesize that our unique animal model of HLH can be used to test the activity and mechanisms of action of current and novel therapeutic approaches for this disease. Methods: Five days after perforin-deficient (prf−/−) or wild-type (WT) mice were infected with LCMV, they were given intraperitoneal (IP) injections of either: etoposide (VP16), dexamethasone (DEX), other chemotherapeutic agents, or irrelevant carrier controls. Outcome measures included: serial measurements of disease severity using a clinical scoring system, post-infection survival, serial measurements of serum interferon-gamma (IFNγ), determination of hemoglobin levels 15 days post-infection, and flow cytometric analyses of whole spleen 8 days post-infection to assess total cellularity, T cell activation, and macrophage infiltration. Effectiveness of antigen presentation by APCs from LCMV-infected drug-treated mice was assessed by ex vivo IFNγ production using effector T cells previously generated in vitro. Osmotic pumps were used to deliver exogenous IFNγ to WT mice to assess the effect of drug therapy on IFNγ-mediated macrophage activation in the absence of viral infection. Results: VP16 was an effective single agent, whereas DEX was not, in our murine model of HLH leading to significant improvements in: disease severity (p<0.03 after day 22 post-infection, VP16 v. control), survival (p<0.02), peak serum IFNγ levels (p<0.009), and hemoglobin levels (p<0.002). Flow cytometric analyses of whole spleen from animals treated with VP16 showed decreases in total cellularity (p<0.0002, VP16 v. control) as well as absolute numbers of CD8 T cells (p<0.002), virus-specific CD8 T cells (p<0.002), and macrophages (p<0.0007). The decrease in T cell numbers was not caused by a direct effect of these drugs on antigen presentation by APCs, and there was no effect of drug treatment on IFNγ-mediated macrophage dependent pathology in the absence of viral infection. Conclusions: We present data using an animal model to test treatments for HLH by examining their effects on different aspects of HLH pathology. Our studies indicate that VP16 acts primarily via cytolytic effects on dividing T cells. This leads to a diminished pool of activated but ineffective responding T cells and attenuation of hypercytokinemia. Normalization of peak serum IFNγ levels results in decreased tissue infiltration of activated macrophages with less hemophagocytosis. Thus, improvement in HLH-like disease severity and survivability after treatment with VP16 is a direct effect of deleting activated IFNγ-producing T cells. Furthermore, this data serves to validate the use of this murine model of HLH pathogenesis to define the mechanism(s) of current and novel anti-HLH therapeutic agents. We envision using this model in the future to design rational anti-HLH therapy by combining cytolytic, immunosuppressive, and/or selective biological agents that have complementary modes of action. Disclosures: No relevant conflicts of interest to declare.

Author(s):  
Laura Marongiu ◽  
Giulia Protti ◽  
Fabio A. Facchini ◽  
Mihai Valache ◽  
Francesca Mingozzi ◽  
...  

AbstractGrowing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19 and this negatively affects T cell activation. The presence of functional effector T cells in mild patients and dysfunctional T cells in severely ill patients suggests that adequate T cell responses are needed to limit disease severity. Therefore, understanding how cDCs cope with SARS-CoV-2 infections can help elucidate the mechanism of generation of protective immune responses. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures with the up-regulation of interferon-stimulated genes and IL-6 signaling pathways. The main difference observed between DC2s and DC3s is the up-regulation of anti-apoptotic genes in DC3s, which explains their accumulation during infection. Furthermore, comparing cDCs between severe and mild patients, we find in the former a profound down-regulation of genes encoding molecules involved in antigen presentation, such as major histocompatibility complex class II (MHCII) molecules, β2 microglobulin, TAP and costimulatory proteins, while an opposite trend is observed for proinflammatory molecules, such as complement and coagulation factors. Therefore, as the severity of the disease increases, cDC2s enhance their inflammatory properties and lose their main function, which is the antigen presentation capacity. In vitro, direct exposure of cDC2s to the virus recapitulates the type of activation observed in vivo. Our findings provide evidence that SARS-CoV-2 can interact directly with cDC2s and, by inducing the down-regulation of crucial molecules required for T cell activation, implements an efficient immune escape mechanism that correlates with disease severity.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 983-991 ◽  
Author(s):  
Evangelos Andreakos ◽  
Clive Smith ◽  
Claudia Monaco ◽  
Fionula M. Brennan ◽  
Brian M. Foxwell ◽  
...  

AbstractAlthough dendritic cells (DCs) are the most potent antigen-presenting cells involved in numerous physiologic and pathologic processes, little is known about the signaling pathways that regulate DC activation and antigen-presenting function. Recently, we demonstrated that nuclear factor (NF)-κB activation is central to that process, as overexpression of IκBα blocks the allogeneic mixed lymphocyte reaction (MLR), an in vitro model of T-cell activation. In this study, we investigated the role of 2 putative NF-κB–inducing components, NF-κB–inducing kinase (NIK), and IκB kinase 2 (IKK2). Using an adenoviral gene transfer method to efficiently express dominant-negative (dn) forms of these molecules in monocyte-derived DCs, we found that IKK2dn but not NIKdn inhibited the allogeneic MLR. When DCs were fixed, this inhibitory effect of IKK2dn was lost, suggesting that IKK2 is involved in T-cell–derived signals that enhance DC antigen presentation during the allogeneic MLR period and does not have an effect on viability or differentiation state of DCs prior to coculture with T cells. One such signal is likely to be CD40 ligand (CD40L), as IKK2dn blocked CD40L but not lipopolysaccharide (LPS)–induced NF-κB activation, cytokine production, and up-regulation of costimulatory molecules and HLA-DR in DCs. In summary, our results demonstrate that IKK2 is essential for DC activation induced by CD40L or contact with allogeneic T cells, but not by LPS, whereas NIK is not required for any of these signals. In addition, our results support IKK2 as a potential therapeutic target for the down-regulation of unwanted immune responses that may occur during transplantation or autoimmunity.


1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


2006 ◽  
Vol 203 (2) ◽  
pp. 437-447 ◽  
Author(s):  
Ingo Klein ◽  
Ian Nicholas Crispe

The transplanted liver elicits systemic tolerance, and the underlying mechanism may also account for the persistence of liver infections, such as malaria and viral hepatitis. These phenomena have led to the hypothesis that antigen presentation within the liver is abortive, leading to T cell tolerance or apoptosis. Here we test this hypothesis in an optimized orthotopic liver transplantation model. In direct contradiction to this model, the liver itself induces full CD8+ T cell activation and differentiation. The effects of microchimerism were neutralized by bone marrow transplantation in the liver donor, and the lack of liver-derived antigen-presenting cells was documented by eight-color flow cytometry and by sensitive functional assays. We conclude that local antigen presentation cannot explain liver tolerance. On the contrary, the liver may be an excellent priming site for naive CD8+ T cells.


1992 ◽  
Vol 175 (5) ◽  
pp. 1345-1352 ◽  
Author(s):  
J C Guéry ◽  
A Sette ◽  
J Leighton ◽  
A Dragomir ◽  
L Adorini

Draining lymph node cells (LNC) from mice immunized with hen egg white lysozyme (HEL) display at their surface antigen-MHC complexes able to stimulate, in the absence of any further antigen addition, HEL peptide-specific, class II-restricted T cell hybridomas. Chloroquine addition to these LNC cultures fails to inhibit antigen presentation, indicating that antigenic complexes of class II molecules and HEL peptides are formed in vivo. MHC class II restriction of antigen presentation by LNC from HEL-primed mice was verified by the use of anti-class II monoclonal antibodies. Coinjection of HEL and the I-Ak-binding peptide HEL 112-129 in mice of H-2k haplotype inhibits the ability of LNC to stimulate I-Ak-restricted, HEL 46-61-specific T cell hybridomas. Similar results are obtained in mice coinjected with the HEL peptides 46-61 and 112-129. Inhibition of T hybridoma activation can also be observed using as antigen-presenting cells irradiated, T cell-depleted LNC from mice coinjected with HEL 46-61 and HEL 112-129, ruling out the possible role of either specific or nonspecific suppressor T cells. Inhibition of T cell proliferation is associated with MHC-specific inhibition of antigen presentation and with occupancy by the competitor of class II binding sites, as measured by activation of peptide-specific T cell hybridomas. These results demonstrate that administration of MHC class II binding peptide competitors selectively inhibits antigen presentation to class II-restricted T cells, indicating competitive blockade of class II molecules in vivo.


2011 ◽  
Vol 208 (5) ◽  
pp. 1041-1053 ◽  
Author(s):  
Sean O. Ryan ◽  
Jason A. Bonomo ◽  
Fan Zhao ◽  
Brian A. Cobb

N-linked glycans are thought to protect class II major histocompatibility complex (MHC) molecules (MHCII) from proteolytic cleavage and assist in arranging proteins within the immune synapse, but were not thought to directly participate in antigen presentation. Here, we report that antigen-presenting cells (APCs) lacking native complex N-glycans showed reduced MHCII binding and presentation of the T cell activating glycoantigen (GlyAg) polysaccharide A from Bacteroides fragilis but not conventional peptides. APCs lacking native N-glycans also failed to mediate GlyAg-driven T cell activation but activated T cells normally with protein antigen. Mice treated with the mannosidase inhibitor kifunensine to prevent the formation of complex N-glycans were unable to expand GlyAg-specific T cells in vivo upon immunization, yet adoptive transfer of normally glycosylated APCs into these animals overcame this defect. Our findings reveal that MHCII N-glycosylation directly impacts binding and presentation of at least one class of T cell–dependent antigen.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3241-3241
Author(s):  
Roland W. Herzog ◽  
George Q. Perrin

Abstract In several published studies, we have shown induction of immune tolerance to coagulations factors by hepatic gene transfer to animals with hemophilia. Tolerance induction is influenced by a number of complex factors, most notably T cell activation and induction of antigen-specific CD4+CD25+FoxP3+ regulatory T cells (Treg). We sought to better understand antigen presentation to CD4+ T cells and the dynamics of the resulting T cell response. To characterize the interaction of adeno-associated virus (AAV) antigen expression in the liver with immune cells, we used an AAV8 vector, which have a high tropism for murine liver, expressing cytoplasmic ovalbumin (AAV8-Cyto-Ova) from the EF1α promoter. Use of AAV8-Cyto-Ova allowed us to eliminate effects from systemic antigen delivery. Vector was injected into the tail vein of DO11.10-transgenic RAG-/- mice, which contain exclusively Ova-specific CD4+ T cells and lack Treg. AAV8-Cyto-Ova caused upregulation of the very early activation marker CD69 on the CD4+ T cells as early as 2 weeks after gene transfer, with induced Treg emerging at about 3 weeks. CD69+CD4+ T cells were first observed in greatest numbers in the liver and celiac lymph node (LN), one of the liver-draining LN. This T cell activation persisted for several weeks. To better define the sites of T cell activation, we used the compound FTY720, which is an agonist of sphingosine-1-phosphate receptors and prevents migration of lymphocytes but does not alter T cell function. Two weeks after AAV8-Cyto-Ova, FTY720 sequestered activated T cells mostly in the liver and celiac LN, when compared to other lymphoid organs, indicating that these are the initial sites of T cell activation. At the 3-week time point, there were fewer activated T cells in the liver and celiac LN in mice that received FTY720, while instead accumulating in the blood. Most likely, activated T cells were prevented from reentering the lymphoid organs from the circulation, where they were sequestered. We conclude that T cells are first activated by AAV8-Cyto-Ova in the liver and celiac LN after two weeks, where they subsequently egress into the circulation and re-enter lymphoid tissues, with many returning to the liver and celiac LN. FTY720 given at 2 weeks prevented the newly activated T cells from leaving the liver and celiac LN. These results strongly suggest that antigen presentation and CD4+ T cell activation occur first in the liver and celiac LN, beginning about 2 weeks after vector administration. Consistent with this conclusion, adoptively transferred Ova-specific CD4+ T cells proliferated first and to a much greater degree in the celiac LN of AAV8-Cyto-Ova transduced mice. Inactiviating Kupffer cells with gadolinium chloride significantly reduced antigen-specific proliferation, illustrating the requirement for professional resident liver antigen-presenting cells. Furthermore, we show that - in contrast to the AAV expression of secreted Ova - Treg are exclusively extrathymically induced after AAV8-Cyto-Ova vector administration. These Treg are found in high numbers in the blood after 2 weeks in mice given the FTY720 compound, suggesting that these peripherally induced Treg quickly enter the circulation. In conclusion, the liver and its draining celiac LN are key sites for antigen presentation and T cell activation in response to transgene expression directed by hepatic gene transfer. Presentation of antigen derived from a non-secreted transgene product induces FoxP3+ Treg that rapidly distribute through the circulation. Disclosures Herzog: Novo Nordisk: Research Funding; Spark Therapeutics: Patents & Royalties: Patent licenses.


2007 ◽  
Vol 292 (4) ◽  
pp. C1431-C1439 ◽  
Author(s):  
Stella A. Nicolaou ◽  
Lisa Neumeier ◽  
YouQing Peng ◽  
Daniel C. Devor ◽  
Laura Conforti

T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca2+ influx. KCa3.1 channels modulate Ca2+ signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3ε, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3ε to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15–30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca2+ influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation.


Sign in / Sign up

Export Citation Format

Share Document