scholarly journals Maturation signatures of conventional dendritic cell subtypes in COVID-19 reflect direct viral sensing

Author(s):  
Laura Marongiu ◽  
Giulia Protti ◽  
Fabio A. Facchini ◽  
Mihai Valache ◽  
Francesca Mingozzi ◽  
...  

AbstractGrowing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19 and this negatively affects T cell activation. The presence of functional effector T cells in mild patients and dysfunctional T cells in severely ill patients suggests that adequate T cell responses are needed to limit disease severity. Therefore, understanding how cDCs cope with SARS-CoV-2 infections can help elucidate the mechanism of generation of protective immune responses. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures with the up-regulation of interferon-stimulated genes and IL-6 signaling pathways. The main difference observed between DC2s and DC3s is the up-regulation of anti-apoptotic genes in DC3s, which explains their accumulation during infection. Furthermore, comparing cDCs between severe and mild patients, we find in the former a profound down-regulation of genes encoding molecules involved in antigen presentation, such as major histocompatibility complex class II (MHCII) molecules, β2 microglobulin, TAP and costimulatory proteins, while an opposite trend is observed for proinflammatory molecules, such as complement and coagulation factors. Therefore, as the severity of the disease increases, cDC2s enhance their inflammatory properties and lose their main function, which is the antigen presentation capacity. In vitro, direct exposure of cDC2s to the virus recapitulates the type of activation observed in vivo. Our findings provide evidence that SARS-CoV-2 can interact directly with cDC2s and, by inducing the down-regulation of crucial molecules required for T cell activation, implements an efficient immune escape mechanism that correlates with disease severity.

2019 ◽  
Author(s):  
Rahel Frick ◽  
Lene S. Høydahl ◽  
Ina Hodnebrug ◽  
Shraddha Kumari ◽  
Grete Berntsen ◽  
...  

AbstractAntibodies specific for antigenic peptides bound to major histocompatibility complex (MHC) molecules are valuable tools for studies of antigen presentation. Such T-cell receptor (TCR)-like antibodies may also have therapeutic potential in human disease due to their ability to target disease-associated antigens with high specificity. We previously generated celiac disease (CeD) relevant TCR-like antibodies that recognize the prevalent gluten epitope DQ2.5-glia-α1a in complex with HLA-DQ2.5. Here, we report on second-generation high-affinity antibodies towards this epitope as well as a panel of novel TCR-like antibodies to another immunodominant gliadin epitope, DQ2.5-glia-α2. The strategy for affinity engineering was based on Rosetta modeling combined with pIX phage display and is applicable to similar protein engineering efforts. We isolated picomolar affinity binders and validated them in Fab and IgG format. Flow cytometry experiments with CeD biopsy material confirm the unique disease specificity of these TCR-like antibodies and reinforce the notion that B cells and plasma cells have a dominant role in gluten antigen presentation in the inflamed CeD gut. Further, the lead candidate 3.C11 potently inhibited CD4+ T-cell activation and proliferation in vitro in an HLA and epitope specific manner, pointing to a potential for targeted disease interception without compromising systemic immunity.Significance StatementConsumption of gluten-containing food drives celiac disease in genetically predisposed individuals. The underlying disease mechanism is not fully understood, but it is strictly dependent on activation of pathogenic T cells. We have engineered high-affinity human antibodies recognizing the T-cell target HLA-DQ2.5 in complex with gluten epitopes and studied cell-specific antigen presentation in patients, which shows that plasma cells and not dendritic cells dominate the inflamed tissue. The only available treatment is lifelong adherence to a gluten-free diet, which is difficult and not effective in all cases. We show that at least one of our antibodies can specifically inhibit activation of pathogenic T-cells in vitro and therefore shows promise for therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 714-714
Author(s):  
Theodore S. Johnson ◽  
Catherine E. Terrell ◽  
Michael B. Jordan

Abstract Abstract 714 Introduction: Hemophagocytic lymphohistiocytosis (HLH) is a rare multisystem hyperinflammatory syndrome associated with immune dysregulation due to genetic or acquired defects in cytotoxic natural killer cell and CD8 T cell function. Although the mechanism of activity is currently unknown, etoposide has been the mainstay of HLH therapy during the past two decades, since its initial empiric use. Jordan, et al (Blood 2004;104(3):735-43) demonstrated that the clinical and laboratory manifestations of HLH are recapitulated in perforin-deficient (prf−/−) mice infected with lymphocytic choriomeningitis virus (LCMV). In this animal model, ineffective cytotoxic T effector cells fail to down-modulate stimulatory signals provided by antigen presenting cells (APCs). Excessive T cell stimulation leads to massive cytokine production which drives systemic macrophage activation resulting in HLH-like disease pathology. Thus, at least three critical events occur in the pathogenesis of HLH: 1) Abnormal increase in antigen presentation, 2) Abnormal increase in CD8 T cell activation and cytokine secretion, and 3) Pathological macrophage activation and hemophagocytosis. We hypothesize that our unique animal model of HLH can be used to test the activity and mechanisms of action of current and novel therapeutic approaches for this disease. Methods: Five days after perforin-deficient (prf−/−) or wild-type (WT) mice were infected with LCMV, they were given intraperitoneal (IP) injections of either: etoposide (VP16), dexamethasone (DEX), other chemotherapeutic agents, or irrelevant carrier controls. Outcome measures included: serial measurements of disease severity using a clinical scoring system, post-infection survival, serial measurements of serum interferon-gamma (IFNγ), determination of hemoglobin levels 15 days post-infection, and flow cytometric analyses of whole spleen 8 days post-infection to assess total cellularity, T cell activation, and macrophage infiltration. Effectiveness of antigen presentation by APCs from LCMV-infected drug-treated mice was assessed by ex vivo IFNγ production using effector T cells previously generated in vitro. Osmotic pumps were used to deliver exogenous IFNγ to WT mice to assess the effect of drug therapy on IFNγ-mediated macrophage activation in the absence of viral infection. Results: VP16 was an effective single agent, whereas DEX was not, in our murine model of HLH leading to significant improvements in: disease severity (p<0.03 after day 22 post-infection, VP16 v. control), survival (p<0.02), peak serum IFNγ levels (p<0.009), and hemoglobin levels (p<0.002). Flow cytometric analyses of whole spleen from animals treated with VP16 showed decreases in total cellularity (p<0.0002, VP16 v. control) as well as absolute numbers of CD8 T cells (p<0.002), virus-specific CD8 T cells (p<0.002), and macrophages (p<0.0007). The decrease in T cell numbers was not caused by a direct effect of these drugs on antigen presentation by APCs, and there was no effect of drug treatment on IFNγ-mediated macrophage dependent pathology in the absence of viral infection. Conclusions: We present data using an animal model to test treatments for HLH by examining their effects on different aspects of HLH pathology. Our studies indicate that VP16 acts primarily via cytolytic effects on dividing T cells. This leads to a diminished pool of activated but ineffective responding T cells and attenuation of hypercytokinemia. Normalization of peak serum IFNγ levels results in decreased tissue infiltration of activated macrophages with less hemophagocytosis. Thus, improvement in HLH-like disease severity and survivability after treatment with VP16 is a direct effect of deleting activated IFNγ-producing T cells. Furthermore, this data serves to validate the use of this murine model of HLH pathogenesis to define the mechanism(s) of current and novel anti-HLH therapeutic agents. We envision using this model in the future to design rational anti-HLH therapy by combining cytolytic, immunosuppressive, and/or selective biological agents that have complementary modes of action. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2396-2402 ◽  
Author(s):  
Anna Cambiaggi ◽  
Sylvie Darche ◽  
Sophie Guia ◽  
Philippe Kourilsky ◽  
Jean-Pierre Abastado ◽  
...  

In humans, a minor subset of T cells express killer cell Ig-like receptors (KIRs) at their surface. In vitro data obtained with KIR+ β and γδ T-cell clones showed that engagement of KIR molecules can extinguish T-cell activation signals induced via the CD3/T-cell receptor (TCR) complex. We analyzed the T-cell compartment in mice transgenic for KIR2DL3 (Tg-KIR2DL3), an inhibitory receptor for HLA-Cw3. As expected, mixed lymphocyte reaction and anti-CD3 monoclonal antibody (MoAb)-redirected cytotoxicity exerted by freshly isolated splenocytes can be inhibited by engagement of transgenic KIR2DL3 molecules. In contrast, antigen and anti-CD3 MoAb-induced cytotoxicity exerted by alloreactive cytotoxic T lymphocytes cannot be inhibited by KIR2DL3 engagement. In double transgenic mice, Tg-KIR2DL3 × Tg-HLA-Cw3, no alteration of thymic differentiation could be documented. Immunization of double transgenic mice with Hen egg white lysozime (HEL) or Pigeon Cytochrome-C (PCC) was indistinguishable from immunization of control mice, as judged by recall antigen-induced in vitro proliferation and TCR repertoire analysis. These results indicate that KIR effect on T cells varies upon cell activation stage and show unexpected complexity in the biological function of KIRs in vivo.


1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


1990 ◽  
Vol 110 (5) ◽  
pp. 1757-1766 ◽  
Author(s):  
W Risau ◽  
B Engelhardt ◽  
H Wekerle

The endothelial blood-brain barrier (BBB) has a critical role in controlling lymphocyte traffic into the central nervous system (CNS), both in physiological immunosurveillance, and in its pathological aberrations. The intercellular signals that possibly could induce lymphocytes to cross the BBB include immunogenic presentation of protein (auto-)antigens by BBB endothelia to circulating T lymphocytes. This concept has raised much, though controversial, attention. We approached this problem by analyzing in vitro immunospecific interactions between clonal rat T lymphocyte lines with syngeneic, stringently purified endothelial monolayer cultures from adult brain micro-vessels. The rat brain endothelia (RBE) were established from rat brain capillaries using double collagenase digestion, density gradient fractionation and selective cytolysis of contaminating pericytes by anti-Thy 1.1 antibodies and complement. Incubation with interferon-gamma in most of the brain-derived endothelial cells induced Ia-antigens in the cytoplasm and on the cell surface in some of the cells. Before the treatment, the cells were completely Ia-negative. Pericytes were unresponsive to IFN-gamma treatment. When confronted with syngeneic T cell lines specific for protein (auto-)antigens (e.g., ovalbumin and myelin basic protein, MBP), RBE were completely unable to induce antigen-specific proliferation of syngeneic T lymphocytes irrespective of pretreatment with IFN-gamma and of cell density. RBE were inert towards the T cells, and did not suppress T cell activation induced by other "professional" antigen presenting cells (APC) such as thymus-derived dendritic cells or macrophages. IFN-gamma-treated RBE were, however, susceptible to immunospecific T cell killing. They were lysed by MBP-specific T cells in the presence of the specific antigen or Con A. Antigen dependent lysis was restricted by the appropriate (MHC) class II product. We conclude that the interaction of brain endothelial cells with encephalitogenic T lymphocytes may involve recognition of antigen in the molecular context of relevant MHC products, but that this interaction per se is insufficient to initiate the full T cell activation program.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


Sign in / Sign up

Export Citation Format

Share Document