Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 735-735 ◽  
Author(s):  
Andrea Pellagatti ◽  
Mario Cazzola ◽  
Aristoteles Giagounidis ◽  
Janet Perry ◽  
Luca Malcovati ◽  
...  

Abstract Abstract 735 The myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies that are characterized by ineffective hematopoiesis resulting in peripheral cytopenias and a hypercellular bone marrow. In order to gain insight into the molecular pathogenesis of the MDS, we have determined the transcriptome of the hematopoietic stem cells (HSC) of 183 MDS patients and 17 healthy controls. The CD34+ cells obtained from MDS patients and healthy individuals were analyzed using Affymetrix U133 Plus2.0 arrays. Global pathway analysis using the Ingenuity software and the DAVID database has identified critical deregulated gene pathways and gene ontology (functional) groups perturbed in MDS HSC compared with normal HSC. The most significantly deregulated pathways in MDS include interferon signaling, thrombopoietin signaling and the Wnt pathway. Moreover, we have identified multiple pathways that are deregulated in specific MDS karyotypic groups and between early (subtype RA) and advanced MDS (subtype RAEB2). Among the most significantly deregulated gene pathways and ontology groups in early MDS are immunodeficiency, apoptosis and chemokine signaling, whereas advanced MDS is characterized by deregulation of the cell cycle, DNA damage response and checkpoint pathways. The clinical behavior of patients with del(5q), +8 or–7/del(7q) is different and we have identified distinct gene expression profiles and deregulated gene pathways for MDS defined by these major karyotypic groups. The most significantly deregulated gene pathways in del(5q) MDS include primary immunodeficiency signaling, Wnt/beta-catenin signaling, integrin signaling, cell cycle regulation and Huntington's disease signaling. Patients with the 5q- syndrome also show deregulation of the p53 pathway. Moreover, chromatin assembly and translation are among the most significant gene ontology groups in del(5q) MDS. We have found that MDS with the–7/del(7q) is characterized by deregulation of multiple pathways involved in cell survival, differentiation, apoptosis and growth, and include SAPK/JNK, NF-kB, PI3K/AKT and ceramide signaling pathways. Strikingly, all of the most significantly deregulated gene pathways in trisomy 8 MDS in our study concern or are associated with the immune response, and include B-cell receptor signaling, antigen presentation and CTLA4 signaling in Cytotoxic T lymphocytes pathways. These data are consistent with an immune system role in the pathogenesis of MDS with trisomy 8. Importantly, much of the deregulated pathway data generated in this study is in accord with the known biology of MDS. On the basis of our observations, we suggest a model for MDS in which immune deregulation and activation of apoptosis pathways in early MDS cells, consistent with clinically observed ineffective hematopoiesis, functions as a barrier to prevent leukemic transformation. Disruption of the DNA damage check points in advanced MDS results in an increase in the error rate of DNA repair with a concomitant increase in genomic instability, leading to evolution to AML. This is the first study to determine deregulated gene pathways and ontology groups in the HSC compartment of a large group of patients with MDS. The deregulated pathways identified are likely to be critical to the MDS HSC phenotype, provide important new insights into the molecular pathogenesis of this disorder, and may represent new targets for therapeutic intervention. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 4 (12) ◽  
pp. 2702-2716
Author(s):  
Zhijie Wu ◽  
Shouguo Gao ◽  
Carrie Diamond ◽  
Sachiko Kajigaya ◽  
Jinguo Chen ◽  
...  

Abstract Constitutional GATA2 deficiency caused by heterozygous germline GATA2 mutations has a broad spectrum of clinical phenotypes, including systemic infections, lymphedema, cytopenias, and myeloid neoplasms. Genotype–phenotype correlation is not well understood mechanistically in GATA2 deficiency. We performed whole transcriptome sequencing of single hematopoietic stem and progenitor cells from 8 patients, who had pathogenic GATA2 mutations and myelodysplasia. Mapping patients’ cells onto normal hematopoiesis, we observed deficiency in lymphoid/myeloid progenitors, also evident from highly constrained gene correlations. HSPCs of patients exhibited distinct patterns of gene expression and coexpression compared with counterparts from healthy donors. Distinct lineages showed differently altered transcriptional profiles. Stem cells in patients had dysregulated gene expression related to apoptosis, cell cycle, and quiescence; increased expression of erythroid/megakaryocytic priming genes; and decreased lymphoid priming genes. The prominent deficiency in lympho-myeloid lineages in GATA2 deficiency appeared at least partly due to the expression of aberrant gene programs in stem cells prior to lineage commitment. We computationally imputed cells with chromosomal abnormalities and determined their gene expression; DNA repair genes were downregulated in trisomy 8 cells, potentially rendering these cells vulnerable to second-hit somatic mutations and additional chromosomal abnormalities. Cells with complex cytogenetic abnormalities showed defects in genes related to multilineage differentiation and cell cycle. Single-cell RNA sequencing is powerful in resolving transcriptomes of cell subpopulations despite a paucity of cells in marrow failure. Our study discloses previously uncharacterized transcriptome signatures of stem cells and progenitors in GATA2 deficiency, providing a broad perspective of potential mechanisms by which germline mutations modulate early hematopoiesis in a human disease. This trial was registered at www.clinicaltrials.gov as NCT01905826, NCT01861106, and NCT00001620.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 683-683
Author(s):  
Christopher Y. Park ◽  
Yoon-Chi Han ◽  
Govind Bhagat ◽  
Jian-Bing Fan ◽  
Irving L Weissman ◽  
...  

Abstract microRNAs (miRNAs) are short, non-protein encoding RNAs that bind to the 3′UTR’s of target mRNAs and negatively regulate gene expression by facilitating mRNA degradation or translational inhibition. Aberrant miRNA expression is well-documented in both solid and hematopoietic malignancies, and a number of recent miRNA profiling studies have identified miRNAs associated with specific human acute myeloid leukemia (AML) cytogenetic groups as well as miRNAs that may prognosticate clinical outcomes in AML patients. Unfortunately, these studies do not directly address the functional role of miRNAs in AML. In fact, there is no direct functional evidence that miRNAs are required for AML development or maintenance. Herein, we report on our recent efforts to elucidate the role of miRNAs in AML stem cells. miRNA expression profiling of AML stem cells and their normal counterparts, hematopoietic stem cells (HSC) and committed progenitors, reveals that miR-29a is highly expressed in human hematopoietic stem cells (HSC) and human AML relative to normal committed progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors is sufficient to induce a myeloproliferative disorder (MPD) that progresses to AML. During the MPD phase of the disease, miR-29a alters the composition of committed myeloid progenitors, significantly expedites cell cycle progression, and promotes proliferation of hematopoietic progenitors at the level of the multipotent progenitor (MPP). These changes are manifested pathologically by marked granulocytic and megakaryocytic hyperplasia with hepatosplenomegaly. Mice with miR-29a-induced MPD uniformly progress to an AML that contains a leukemia stem cell (LSC) population that can serially transplant disease with as few as 20 purified LSC. Gene expression analysis reveals multiple tumor suppressors and cell cycle regulators downregulated in miR-29a expressing cells compared to wild type. We have demonstrated that one of these genes, Hbp1, is a bona fide miR-29a target, but knockdown of Hbp1 in vivo does not recapitulate the miR-29a phenotype. These data indicate that additional genes are required for miR-29a’s leukemogenic activity. In summary, our data demonstrate that miR-29a regulates early events in normal hematopoiesis and promotes myeloid differentiation and expansion. Moreover, they establish that misexpression of a single miRNA is sufficient to drive leukemogenesis, suggesting that therapeutic targeting of miRNAs may be an effective means of treating myeloid leukemias.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 603-603 ◽  
Author(s):  
Masayuki Yamashita ◽  
Eriko Nitta ◽  
Toshio Suda

Abstract Accumulation of DNA damage in hematopoietic stem cells (HSCs) is associated with aging, bone marrow failure and development of hematological malignancies. Mutation accumulation in HSCs precedes the development of leukemia and lymphoma, and these “pre-leukemic HSCs” can survive after chemotherapy, contributing to the relapse of the disease. Thus, understanding for the DNA damage response at a HSC level is a matter of critical importance for lifelong hematopoiesis, yet the protection mechanism for HSCs from DNA damage accumulation remains to be elucidated. During our study on the response of HSCs to ionizing radiation (IR), we have detected higher responsiveness of HSCs to DNA damage compared with committed progenitor cells: higher p53 activation was observed in HSC-enriched LSK (Lin-Sca1+cKit+) cells and LT-HSCs (CD150+CD41-CD48-LSK) than in myeloid progenitor-enriched LKS- cells. Of note, when treated with 4 Gy IR, LSK cells exhibited stronger upregulation of pro-apoptotic genes Bax, Noxa and Puma compared with LKS- cells, whereas upregulation of survival-contributing p21 and Mdm2 genes was comparable between the two populations. Corresponding to such characteristic behavior, we have identified apoptosis-stimulating protein of p53 1 (Aspp1) as a novel specific regulator of HSCs that provides HSCs with high sensitivity to apoptosis. We found that mRNA and protein of Aspp1 were specifically detected in LSK cells and LT-HSCs. To uncover the roles of Aspp1 in the regulation of HSCs, we evaluated HSCs of adult Aspp1 knockout (KO) mice. These mutant mice exhibited a major increase in the absolute number of LSK cells (1.5-fold; P<0.05) and LT-HSCs (2-fold; P<0.0005). Furthermore, self-renewal capacity of Aspp1-null HSCs was significantly enhanced as measured by serial competitive bone marrow (BM) transplantation assays (P<0.01). To assess the cause of enhanced self-renewal of Aspp1-null HSCs, we examined gene expression profile of Aspp1-null LSK cells before and after BM transplantation using multiplex quantitative RT-PCR array. Aspp1-null LSK cells showed higher expression of multiple quiescence-related genes including Tek, Mpl and Ndn. In line with this, Ki67 staining revealed that Aspp1-null LSK cells showed resistance to the loss of quiescence after serial BM transplantation (P<0.01), and Aspp1 KO mice showed accelerated recovery of peripheral blood and BM when treated with a single dose of 5-FU (P<0.05). Moreover, when serially transplanted or subjected to 4 Gy IR in vivo, Aspp1-null LSK cells exhibited higher resistance to apoptosis which was detected as decreased proportion of Annexin V-positive cells (P<0.05). Gene expression analysis consistently revealed that the induction of pro-apoptotic genes Bax, Noxa and Puma was impaired in irradiated Aspp1-null LSK cells. As a result of the reduced apoptosis, Aspp1-null LSK cells exhibited the tendency to retain persistent DNA damage after genotoxic stress as assessed by γH2AX and 53BP1 foci (chi-square test, P<0.05). Importantly, by breeding Aspp1 KO mice with Mx1-Cre mice and p53flox/flox mice, we verified that Aspp1 synergized with p53 to regulate self-renewal and genomic integrity of HSCs beyond its canonical p53-dependent function. Aspp1 loss further enhanced self-renewal capacity of HSCs in a p53-null background when assayed by serial BM transplantation (P<0.05). Likewise, Aspp1 deficiency further accentuated the accumulation of DNA damage after IR exposure in the absence of p53 (P<0.05). Consequently, whereas approximately half of the recipients receiving p53-null LSK cells died of thymic lymphoma, the recipient mice transplanted with LSK cells deficient for both Aspp1 and p53 were 100% lethal within 6 months after BM transplantation (log-rank test, P<0.01). These mice succumbed to hematological malignancies, mostly T-cell acute lymphoblastic lymphoma and leukemia (ALL) (88%) but also B-cell (6%) and myeloid (6%) malignancies. Taken together, our study demonstrates that Aspp1 attenuates HSC quiescence and induces apoptosis in damaged HSCs, in both p53-dependent and -independent manners, thereby inhibiting the development of leukemia and lymphoma in conjunction with p53 in HSCs. As loss of Aspp1 expression due to aberrant methylation of its promoter has already been proven to be an independent poor prognosis factor in ALL patients, Aspp1 may be a potential target for stem cell-directed therapy of leukemia and lymphoma. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 15 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Isabel Beerman ◽  
Jun Seita ◽  
Matthew A. Inlay ◽  
Irving L. Weissman ◽  
Derrick J. Rossi

Stem Cells ◽  
2016 ◽  
Vol 34 (3) ◽  
pp. 699-710 ◽  
Author(s):  
Susanne Wingert ◽  
Frederic B. Thalheimer ◽  
Nadine Haetscher ◽  
Maike Rehage ◽  
Timm Schroeder ◽  
...  

2007 ◽  
Vol 214 (3) ◽  
pp. 786-795 ◽  
Author(s):  
Gerri J. Dooner ◽  
Gerald A. Colvin ◽  
Mark S. Dooner ◽  
Kevin W. Johnson ◽  
Peter J. Quesenberry

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3235-3235
Author(s):  
Jonathan Kenyon ◽  
Anshul Saurastri ◽  
Stanton L. Gerson

Abstract Abstract 3235 Poster Board III-172 DNA damage repair pathways have been shown to be important for hematopoietic function and longevity. A number of studies focusing on the loss of DNA damage repair genes have reported age related loss of hematopoietic stem cells, reduced hematopoietic function, and increased rates of hematologic cancer. A poorly studied pathway with respect to its effect on hematopoietic function is the mismatch repair (MMR) pathway. Microsatellite instability (MSI), one marker of MMR failure, has been observed in acute lymphoblastic leukemia, myelodysplastic syndrome, and lymphocytes obtained from the peripheral blood of the elderly. Further, studies investigating MMR pathway disruption in mice show an increased incidence of age related hematologic disorders and failure to repopulate in competitive transplant experiments. These reports led to the formation of the hypothesis that age related loss of MMR in a subset hematopoietic stem/progenitor cells (HSC) leads to a progenitor population with a mutator phenotype potentially leading to cell death or leukemogenesis. To test this hypothesis we clonally expanded HSC from cord blood, bone marrow, and bone core samples from various aged individuals most of whom had normal CBCs. These colony forming units (CFU) were then tested for MSI at five microsatellite loci previously used in the diagnosis of the MMR defective disease HNPCC (BAT 25, BAT 26, D2S123, D5S346, and D17S250). These results showed a statistically significant increase in high grade instability (measured as MSI observed at >20% of loci tested) in CFU obtained from individuals over the age of 50 compared to those in the age range between 0 and 50 years (p=0.0034). Next we sought to determine if loss of gene expression in MMR genes could account for the observed MSI. Gene expression of two genes known to be transcriptionally downregulated in MMR failure, hMLH1 and hMSH2, were assessed by qRT-PCR in CFU obtained from pure CD34+ immunomagnetic separations of HSC from various aged donors. Further, individual CD34+ cells from these same donors were fixed to slides and immunostained for hMLH1 and hMSH2. We observed a significant loss of hMLH1 gene expression in a subset of HSC obtained from older donors above age 42, but no pattern of loss of hMSH2 gene expression. The age related loss of MMR in HSC suggests that MMR pathway proficiency is important for hematopoiesis. These results suggest that loss of MMR might precede myelodysplastic syndromes and leukemia in older individuals. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 64 ◽  
pp. S87
Author(s):  
Michael Milyavsky ◽  
Shahar Biechonski ◽  
Leonid Olender ◽  
Adi Zipin-Roitman ◽  
Muhammad Yassin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document