p53 Co-Activator Aspp1 Induces Apoptosis in Damaged Hematopoietic Stem Cells and Prevents Malignant Transformation

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 603-603 ◽  
Author(s):  
Masayuki Yamashita ◽  
Eriko Nitta ◽  
Toshio Suda

Abstract Accumulation of DNA damage in hematopoietic stem cells (HSCs) is associated with aging, bone marrow failure and development of hematological malignancies. Mutation accumulation in HSCs precedes the development of leukemia and lymphoma, and these “pre-leukemic HSCs” can survive after chemotherapy, contributing to the relapse of the disease. Thus, understanding for the DNA damage response at a HSC level is a matter of critical importance for lifelong hematopoiesis, yet the protection mechanism for HSCs from DNA damage accumulation remains to be elucidated. During our study on the response of HSCs to ionizing radiation (IR), we have detected higher responsiveness of HSCs to DNA damage compared with committed progenitor cells: higher p53 activation was observed in HSC-enriched LSK (Lin-Sca1+cKit+) cells and LT-HSCs (CD150+CD41-CD48-LSK) than in myeloid progenitor-enriched LKS- cells. Of note, when treated with 4 Gy IR, LSK cells exhibited stronger upregulation of pro-apoptotic genes Bax, Noxa and Puma compared with LKS- cells, whereas upregulation of survival-contributing p21 and Mdm2 genes was comparable between the two populations. Corresponding to such characteristic behavior, we have identified apoptosis-stimulating protein of p53 1 (Aspp1) as a novel specific regulator of HSCs that provides HSCs with high sensitivity to apoptosis. We found that mRNA and protein of Aspp1 were specifically detected in LSK cells and LT-HSCs. To uncover the roles of Aspp1 in the regulation of HSCs, we evaluated HSCs of adult Aspp1 knockout (KO) mice. These mutant mice exhibited a major increase in the absolute number of LSK cells (1.5-fold; P<0.05) and LT-HSCs (2-fold; P<0.0005). Furthermore, self-renewal capacity of Aspp1-null HSCs was significantly enhanced as measured by serial competitive bone marrow (BM) transplantation assays (P<0.01). To assess the cause of enhanced self-renewal of Aspp1-null HSCs, we examined gene expression profile of Aspp1-null LSK cells before and after BM transplantation using multiplex quantitative RT-PCR array. Aspp1-null LSK cells showed higher expression of multiple quiescence-related genes including Tek, Mpl and Ndn. In line with this, Ki67 staining revealed that Aspp1-null LSK cells showed resistance to the loss of quiescence after serial BM transplantation (P<0.01), and Aspp1 KO mice showed accelerated recovery of peripheral blood and BM when treated with a single dose of 5-FU (P<0.05). Moreover, when serially transplanted or subjected to 4 Gy IR in vivo, Aspp1-null LSK cells exhibited higher resistance to apoptosis which was detected as decreased proportion of Annexin V-positive cells (P<0.05). Gene expression analysis consistently revealed that the induction of pro-apoptotic genes Bax, Noxa and Puma was impaired in irradiated Aspp1-null LSK cells. As a result of the reduced apoptosis, Aspp1-null LSK cells exhibited the tendency to retain persistent DNA damage after genotoxic stress as assessed by γH2AX and 53BP1 foci (chi-square test, P<0.05). Importantly, by breeding Aspp1 KO mice with Mx1-Cre mice and p53flox/flox mice, we verified that Aspp1 synergized with p53 to regulate self-renewal and genomic integrity of HSCs beyond its canonical p53-dependent function. Aspp1 loss further enhanced self-renewal capacity of HSCs in a p53-null background when assayed by serial BM transplantation (P<0.05). Likewise, Aspp1 deficiency further accentuated the accumulation of DNA damage after IR exposure in the absence of p53 (P<0.05). Consequently, whereas approximately half of the recipients receiving p53-null LSK cells died of thymic lymphoma, the recipient mice transplanted with LSK cells deficient for both Aspp1 and p53 were 100% lethal within 6 months after BM transplantation (log-rank test, P<0.01). These mice succumbed to hematological malignancies, mostly T-cell acute lymphoblastic lymphoma and leukemia (ALL) (88%) but also B-cell (6%) and myeloid (6%) malignancies. Taken together, our study demonstrates that Aspp1 attenuates HSC quiescence and induces apoptosis in damaged HSCs, in both p53-dependent and -independent manners, thereby inhibiting the development of leukemia and lymphoma in conjunction with p53 in HSCs. As loss of Aspp1 expression due to aberrant methylation of its promoter has already been proven to be an independent poor prognosis factor in ALL patients, Aspp1 may be a potential target for stem cell-directed therapy of leukemia and lymphoma. Disclosures No relevant conflicts of interest to declare.

Cell Reports ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 964-975 ◽  
Author(s):  
Heather A. Himburg ◽  
Jeffrey R. Harris ◽  
Takahiro Ito ◽  
Pamela Daher ◽  
J. Lauren Russell ◽  
...  

2022 ◽  
Author(s):  
Merve Aksoz ◽  
Grigore-Aristide Gafencu ◽  
Bilyana Stoilova Stoilova ◽  
Mario Buono ◽  
Yiran Meng ◽  
...  

Hematopoietic stem cells (HSC) reconstitute multi-lineage human hematopoiesis after clinical bone marrow transplantation and are the cells-of-origin of hematological malignancies. Though HSC provide multi-lineage engraftment, individual murine HSCs are lineage-biased and contribute unequally to blood cell lineages. Now, by combining xenografting of molecularly barcoded adult human bone marrow (BM) HSCs and high-throughput single cell RNA sequencing we demonstrate that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identify platelet-biased and multi-lineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young, and aged, BM show that both the proportion of platelet-biased HSCs, and their level of transcriptional platelet priming, increases with age. Therefore, platelet-biased HSCs, as well as their increased prevalence and elevated transcriptional platelet priming during ageing, are conserved between human and murine hematopoiesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 405-405
Author(s):  
Kenichi Miharada ◽  
Göran Karlsson ◽  
Jonas Larsson ◽  
Emma Larsson ◽  
Kavitha Siva ◽  
...  

Abstract Abstract 405 Cripto is a member of the EGF-CFC soluble protein family and has been identified as an important factor for the proliferation/self-renewal of ES and several types of tumor cells. The role for Cripto in the regulation of hematopoietic cells has been unknown. Here we show that Cripto is a potential new candidate factor to increase self-renewal and expand hematopoietic stem cells (HSCs) in vitro. The expression level of Cripto was analyzed by qRT-PCR in several purified murine hematopoietic cell populations. The findings demonstrated that purified CD34-KSL cells, known as highly concentrated HSC population, had higher expression levels than other hematopoietic progenitor populations including CD34+KSL cells. We asked how Cripto regulates HSCs by using recombinant mouse Cripto (rmCripto) for in vitro and in vivo experiments. First we tested the effects of rmCripto on purified hematopoietic stem cells (CD34-LSK) in vitro. After two weeks culture in serum free media supplemented with 100ng/ml of SCF, TPO and 500ng/ml of rmCripto, 30 of CD34-KSL cells formed over 1,300 of colonies, including over 60 of GEMM colonies, while control cultures without rmCripto generated few colonies and no GEMM colonies (p<0.001). Next, 20 of CD34-KSL cells were cultured with or without rmCripto for 2 weeks and transplanted to lethally irradiated mice in a competitive setting. Cripto treated donor cells showed a low level of reconstitution (4–12%) in the peripheral blood, while cells cultured without rmCripto failed to reconstitute. To define the target population and the mechanism of Cripto action, we analyzed two cell surface proteins, GRP78 and Glypican-1, as potential receptor candidates for Cripto regulation of HSC. Surprisingly, CD34-KSL cells were divided into two distinct populations where HSC expressing GRP78 exhibited robust expansion of CFU-GEMM progenitor mediated by rmCripto in CFU-assay whereas GRP78- HSC did not respond (1/3 of CD34-KSL cells were GRP78+). Furthermore, a neutralization antibody for GRP78 completely inhibited the effect of Cripto in both CFU-assay and transplantation assay. In contrast, all lineage negative cells were Glypican-1 positive. These results suggest that GRP78 must be the functional receptor for Cripto on HSC. We therefore sorted these two GRP78+CD34-KSL (GRP78+HSC) and GRP78-CD34-KSL (GRP78-HSC) populations and transplanted to lethally irradiated mice using freshly isolated cells and cells cultured with or without rmCripto for 2 weeks. Interestingly, fresh GRP78-HSCs showed higher reconstitution than GRP78+HSCs (58–82% and 8–40%, p=0.0038) and the reconstitution level in peripheral blood increased rapidly. In contrast, GRP78+HSC reconstituted the peripheral blood slowly, still at a lower level than GRP78-HSC 4 months after transplantation. However, rmCripto selectively expanded (or maintained) GRP78+HSCs but not GRP78-HSCs after culture and generated a similar level of reconstitution as freshly transplanted cells (12–35%). Finally, bone marrow cells of engrafted recipient mice were analyzed at 5 months after transplantation. Surprisingly, GRP78+HSC cultured with rmCripto showed higher reconstitution of the CD34-KSL population in the recipients' bone marrow (45–54%, p=0.0026), while the reconstitution in peripheral blood and in total bone marrow was almost the same. Additionally, most reconstituted CD34-KSL population was GRP78+. Interestingly freshly transplanted sorted GRP78+HSC and GRP78-HSC can produce the GRP78− and GRP78+ populations in the bone marrow and the ratio of GRP78+/− cells that were regenerated have the same proportion as the original donor mice. Compared to cultured cells, the level of reconstitution (peripheral blood, total bone marrow, HSC) in the recipient mice was almost similar. These results indicate that the GRP78 expression on HSC is reversible, but it seems to be “fixed” into an immature stage and differentiate with lower efficiency toward mature cells after long/strong exposure to Cripto signaling. Based on these findings, we propose that Cripto is a novel factor that maintains HSC in an immature state and may be a potent candidate for expansion of a distinct population of GRP78 expressing HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 488-498 ◽  
Author(s):  
In-Kyung Park ◽  
Yaqin He ◽  
Fangming Lin ◽  
Ole D. Laerum ◽  
Qiang Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.


2000 ◽  
Vol 192 (9) ◽  
pp. 1273-1280 ◽  
Author(s):  
Kazuhiro Sudo ◽  
Hideo Ema ◽  
Yohei Morita ◽  
Hiromitsu Nakauchi

Little is known of age-associated functional changes in hematopoietic stem cells (HSCs). We studied aging HSCs at the clonal level by isolating CD34−/lowc-Kit+Sca-1+ lineage marker–negative (CD34−KSL) cells from the bone marrow of C57BL/6 mice. A population of CD34−KSL cells gradually expanded as age increased. Regardless of age, these cells formed in vitro colonies with stem cell factor and interleukin (IL)-3 but not with IL-3 alone. They did not form day 12 colony-forming unit (CFU)-S, indicating that they are primitive cells with myeloid differentiation potential. An in vivo limiting dilution assay revealed that numbers of multilineage repopulating cells increased twofold from 2 to 18 mo of age within a population of CD34−KSL cells as well as among unseparated bone marrow cells. In addition, we detected another compartment of repopulating cells, which differed from HSCs, among CD34−KSL cells of 18-mo-old mice. These repopulating cells showed less differentiation potential toward lymphoid cells but retained self-renewal potential, as suggested by secondary transplantation. We propose that HSCs gradually accumulate with age, accompanied by cells with less lymphoid differentiation potential, as a result of repeated self-renewal of HSCs.


1984 ◽  
Vol 159 (3) ◽  
pp. 731-745 ◽  
Author(s):  
R A Fleischman ◽  
B Mintz

Bone marrow of normal adult mice was found, after transplacental inoculation, to contain cells still able to seed the livers of early fetuses. The recipients' own hematopoietic stem cells, with a W-mutant defect, were at a selective disadvantage. Progression of donor strain cells to the bone marrow, long-term self-renewal, and differentiation into myeloid and lymphoid derivatives was consistent with the engraftment of totipotent hematopoietic stem cells (THSC) comparable to precursors previously identified (4) in normal fetal liver. More limited stem cells, specific for the myeloid or lymphoid cell lineages, were not detected in adult bone marrow. The bone marrow THSC, however, had a generally lower capacity for self-renewal than did fetal liver THSC. They had also embarked upon irreversible changes in gene expression, including partial histocompatibility restriction. While completely allogeneic fetal liver THSC were readily accepted by fetuses, H-2 incompatibility only occasionally resulted in engraftment of adult bone marrow cells and, in these cases, was often associated with sudden death at 3-5 mo. On the other hand, H-2 compatibility, even with histocompatibility differences at other loci, was sufficient to ensure long-term success as often as with fetal liver THSC.


Sign in / Sign up

Export Citation Format

Share Document