Combination of a MEK Inhibitor, AZD6244, and Dual PI3K/mTOR Inhibitor, NVP-BEZ235: An Effective Therapeutic Strategy for Acute Myeloid Leukemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3978-3978 ◽  
Author(s):  
Hongtao Liu ◽  
Ernesto Diaz-Flores ◽  
Xavier Poiré ◽  
Olatoyosi Odenike ◽  
Greg Koval ◽  
...  

Abstract Abstract 3978 It has been demonstrated that MEK/MAPK and PI3K/Akt are constitutively activated in the majority of AML cases and that their aberrant expression is associated with a poor prognosis. Targeted inhibition of either the MEK/MAPK or the PI3K/Akt pathway alone has only demonstrated mild to modest clinical activity, possibly due to feedback activation of compensatory pathways. Thus, preclinical studies have recently turned to targeted inhibition of both of these pathways simultaneously. In the current study, the efficacy of the combination of two orally available inhibitors to MEK (AZD6244, Astra Zeneca) and PI3K/mTOR (NVP-BEZ235, Novartis) was evaluated in AML cell lines and in primary AML patient samples. In MV 4;11 AML cells (harboring both the MLL re-arrangement and FLT3 internal tandem mutation), AZD6244 or BEZ235 alone moderately decreased viable cell numbers by 30–40% as measured by the MTS assay, a colorimetric assay for cellular growth and survival, but the combination of these two had a dramatic additive effect with a decrease of viable cell numbers by 70–80%. Similar effects were observed in AML cell lines with different cytogenetic and molecular abnormalities including THP-1 [t (6;11)], HL-60, KG-1 [del(5q)], and Kasumi-1 [t(8;21)]. Similar results were also obtained in leukemia cells from 3 patients with AML with different recurring cytogenetic abnormalities. Apoptotic cell death was determined by detection of <2N DNA using 7AAD staining, and the cell cycle was measured using BrdU incorporation followed by flow cytometric analysis. The combination therapy additively induced apoptotic cell death up to 50–60% and cell cycle arrest, whereas either inhibitor alone resulted in only mild apoptotic cell death (∼15-30%). Although dual pathway inhibition was efficacious in all AML cell lines, no additive effect of dual inhibition was observed in Jeko-1, a mantle cell lymphoma cell line. To evaluate the underlying mechanisms of apoptosis, flow cytometry was used to detect phospho-protein and apoptosis-associated proteins. Interestingly, inhibition of MEK/MAPK alone with AZD6244 resulted in decreased pErk level, but increased pmTOR and anti-apoptotic Mcl-1 levels. These results suggest a feedback activation of PI3K/Akt/mTOR pathway, which could be abrogated by the addition of BEZ235. Similarly, inhibition of PI3K/Akt/mTOR resulted in increased pErk and pJNK which could be abrogated by adding AZD6244. AZD6244 also resulted in increased expression of pro-apoptotic Bim, and anti-apoptotic Bcl-2 in AML cell lines, which could not be abrogated by inhibition of PI3K/Akt/mTOR by BEZ235, suggesting that the modulation of these two proteins is independent of the PI3K/Akt/mTOR pathway. Taken together, these findings suggest that inhibition of Bcl-2 might further sensitize AML cells to apoptotic cell death induced by the combination of AZD6244 and BEZ235. In conclusion, these data provide a strong rationale for drug combination targeting of PI3K/Akt/mTOR and MEK pathways for the treatment of AML. Furthermore, inhibition of BCl-2 anti-apoptosis family members may, in part, explain the efficacy of dual signaling blockade in AML cells and suggests an additional therapeutic targeting strategy. Single agent small molecule inhibitors of PI3K/Akt/mTOR, MEK and BCL-2 are already being tested in early phase clinical trials in solid tumors and in hematological malignancies; thus, feasibility studies of combinations of these small molecule inhibitors should be designed to test their efficacy in patients with AML. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2003 ◽  
Vol 65 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Masanobu HAYASHI ◽  
Taku HAMASU ◽  
Daiji ENDOH ◽  
Reiko SHIMOJIMA ◽  
Toyo OKUI

2008 ◽  
Vol 76 (10) ◽  
pp. 4600-4608 ◽  
Author(s):  
Karin Heine ◽  
Sascha Pust ◽  
Stefanie Enzenmüller ◽  
Holger Barth

ABSTRACT The binary C2 toxin from Clostridium botulinum mono-ADP-ribosylates G-actin in the cytosol of eukaryotic cells. This modification leads to depolymerization of actin filaments accompanied by cell rounding within 3 h of incubation but does not immediately induce cell death. Here we investigated the long-term responses of mammalian cell lines (HeLa and Vero) following C2 toxin treatment. Cells stayed round even though the toxin was removed from the medium after its internalization into the cells. No unmodified actin reappeared in the C2 toxin-treated cells within 48 h. Despite actin being completely ADP-ribosylated after about 7 h, no obvious decrease in the overall amount of actin was observed for at least 48 h. Therefore, ADP-ribosylation was not a signal for an accelerated degradation of actin in the tested cell lines. C2 toxin treatment resulted in delayed apoptotic cell death that became detectable about 15 to 24 h after toxin application in a portion of the cells. Poly(ADP)-ribosyltransferase 1 (PARP-1) was cleaved in C2 toxin-treated cells, an indication of caspase 3 activation and a hallmark of apoptosis. Furthermore, specific caspase inhibitors prevented C2 toxin-induced apoptosis, implying that caspases 8 and 9 were activated in C2 toxin-treated cells. C2I, the ADP-ribosyltransferase component of the C2 toxin, remained active in the cytosol for at least 48 h, and no extensive degradation of C2I was observed. From our data, we conclude that the long-lived nature of C2I in the host cell cytosol was essential for the nonreversible cytotoxic effect of C2 toxin, resulting in delayed apoptosis of the tested mammalian cells.


1994 ◽  
Vol 180 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
M G Cifone ◽  
R De Maria ◽  
P Roncaioli ◽  
M R Rippo ◽  
M Azuma ◽  
...  

Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Toshinori Ozaki ◽  
Akira Nakagawara ◽  
Hiroki Nagase

A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such asp21WAF1,BAX, andPUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 524 ◽  
Author(s):  
Melanie Predebon ◽  
Danielle Bond ◽  
Joshua Brzozowski ◽  
Helen Jankowski ◽  
Fiona Deane ◽  
...  

Pancreatic cancer (PC) is a complex, heterogeneous disease with a dismal prognosis. Current therapies have failed to improve survival outcomes, urging the need for discovery of novel targeted treatments. Bispidinone derivatives have yet to be investigated as cytotoxic agents against PC cells. The cytotoxic effect of four bispidinone derivatives (BisP1: 1,5-diphenyl-3,7-bis(2-hydroxyethyl)-3,7-diazabicyclo[3.3.1]nonan-9-one; BisP2: 3,7-bis-(2-(S)-amino-4-methylsulfanylbutyryl)-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride; BisP3: [2-{7-[2-(S)-tert-butoxycarbonylamino-3-(1H-indol-3-yl)-propionyl]-9-oxo-1,5-diphenyl-3,7-diazabicyclo[3.3.1]non-3-yl}-1-(S)-(1H-indol-3-ylmethyl)-2-oxoethyl]-carbamic acid tertbutyl ester; BisP4: 3,7-bis-[2-(S)-amino-3-(1H-indol-3-yl)-propionyl]-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride) was assessed against PC cell lines (MiaPaca-2, CFPAC-1 and BxPC-3). Cell viability was assessed using a Cell Counting Kit-8 (CCK-8) colorimetric assay, while apoptotic cell death was confirmed using fluorescence microscopy and flow cytometry. Initial viability screening revealed significant cytotoxic activity from BisP4 treatment (1 µM–100 µM) on all three cell lines, with IC50 values for MiaPaca-2, BxPC-3, and CFPAC-1 16.9 µM, 23.7 µM, and 36.3 µM, respectively. Cytotoxic treatment time-response (4 h, 24 h, and 48 h) revealed a 24 h treatment time was sufficient to produce a cytotoxic effect on all cell lines. Light microscopy evaluation (DAPI staining) of BisP4 treated MiaPaca-2 PC cells revealed dose-dependent characteristic apoptotic morphological changes. In addition, flow cytometry confirmed BisP4 induced apoptotic cell death induction of activated caspase-3/-7. The bispidinone derivative BisP4 induced an apoptosis-mediated cytotoxic effect on MiaPaca-2 cell lines and significant cytotoxicity on CFPAC-1 and BxPC-3 cell lines. Further investigations into the precise cellular mechanisms of action of this class of compounds are necessary for potential development into pre-clinical trials.


Sign in / Sign up

Export Citation Format

Share Document