RETRACTED: A study of the role of apoptotic cell death and cell cycle events mediating the mechanism of action of 6-hydroxycoumarin-3-carboxylatosilver in human malignant hepatic cells

2013 ◽  
Vol 337 (1) ◽  
pp. 146
Author(s):  
Bhumika Thati ◽  
Andy Noble ◽  
Bernadette S. Creaven ◽  
Maureen Walsh ◽  
Malachy McCann ◽  
...  
1998 ◽  
Vol 187 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Hyun-Jeong Kwak ◽  
Chang-Duk Jun ◽  
Hyun-Ock Pae ◽  
Ji-Chang Yoo ◽  
Young-Chul Park ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Toshinori Ozaki ◽  
Akira Nakagawara ◽  
Hiroki Nagase

A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such asp21WAF1,BAX, andPUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10084-10084
Author(s):  
Jenny Kreahling ◽  
Damon R. Reed ◽  
Parastou Foroutan ◽  
Gary Martinez ◽  
Robert Gillies ◽  
...  

10084 Background: Sarcomas consist of more than 50 subtypes of mesenchymal tumors. Doxorubicin alone or in combination has been the primary therapy for treatment of sarcomas; however, the response rates are suboptimal in many of the more common adult subtypes of soft tissue sarcoma. Accordingly, new agents are needed for the treatment of this heterogeneous group of diseases. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Methods: MK1775 treatment of multiple sarcoma preclinical models at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death. In our current study we have investigated the therapeutic efficacy of MK1775 in sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo in a xenograft model of osteosarcoma both alone and in combination with gemcitabine. Results: In patient-derived bone and soft tissue sarcoma samples ex vivo treatments show MK1775 in combination with gemcitabine causes significant apoptotic cell death suggesting that this treatment may represent a novel approach in the treatment of sarcomas. The cytotoxic effect of Wee1 inhibition on sarcoma cells appears to be independent of p53 mutational status. Furthermore, in a patient-derived osteosarcoma xenograft mouse model we show the therapeutic efficacy of MK1775 in vivo by utilizing magnetic resonance imaging (MRI) and diffusion MRI methods. Our data shows MK1775 in combination with gemcitabine dramatically slows tumor growth, increases apoptotic cell death and increases CDC2 activity. Cell viability, a clinically established prognostic indicator of survival, was lowest with the combination and very low in animals treated with MK1775 alone. This was mainly due to increased mineralization of the tumors. Caspase-3 was increased in MK1775 treated animals by immunohistochemistry as well. Conclusions: These results together with the promising safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent alone or in combination with gemcitabine in the treatment of both adult as well as pediatric sarcoma patients.


Sign in / Sign up

Export Citation Format

Share Document