Manipulating Higher Order Chromatin Structure of the β-Globin Locus by Targeted Tethering of a “looping” Factor

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 647-647
Author(s):  
Wulan Deng ◽  
Philip D Gregory ◽  
Andreas Reik ◽  
Gerd Blobel

Abstract Abstract 647 The mammalian β-globin locus is under the coordinated control of multiple transcription factors to ensure the correct expression of the globin genes during development. The distal β-globin locus control region (LCR) physically interacts with β-like globin promoters to form developmentally dynamic chromatin loops. The hematopoietic transcription factor GATA-1 and its associated cofactor Ldb1 bind to the LCR and the β-globin promoter and are essential for loop formation and β-globin expression. However, the molecular basis of chromatin looping and its cause-effect relationship with transcriptional activation are unclear. Here, we examined whether Ldb1 is an effector of GATA-1 during loop formation. Specifically, we tested whether artificial tethering of Ldb1 to the endogenous β-globin promoter and LCR can substitute for GATA-1 function. Ldb1 was fused to artificial zinc finger proteins (ZFP) designed to bind to the LCR and β-globin promoter. Ldb1-ZFPs were introduced pairwise into murine GATA-1 null erythroid cells in which the β-globin locus is relaxed and transcriptionally silent. In vivo binding of the Ldb1-ZFPs to their targets was verified by ChIP assay. Strikingly, expression of Ldb1-ZFPs but not Ldb1 or ZFPs alone led to substantial activation of β-globin transcription in the absence of GATA-1. Moreover, chromosome conformation capture experiments showed that Ldb1-ZFPs triggered physical association between the LCR and the β-globin promoter. Recruitment of RNA polymerase II (Pol II) and its phosphorylation at serine 5 are critical LCR-dependent regulatory steps in β-globin transcription. We found that Ldb1-ZFP expression facilitated Pol II recruitment at the β-globin promoter and serine 5 phosphorylation to the same level as GATA-1-expressing erythroid cells. This is consistent with an Ldb1-ZFP-induced LCR-β-globin promoter chromatin loop. In concert, these results indicate that Ldb1 is a critical effector for GATA-1 by mediating enhancer-promoter loops. In broader terms, our results suggest that chromatin loop formation can be sufficient for gene activation in the absence of an essential transcription factor. We are currently in the process of examining whether targeting of the LCR to embryonic and fetal globin genes can be used to activate them in adult cells. Targeted chromatin loop formation may provide a method to activate fetal or adult hemoglobin expression in individuals with β-thalassemia or sickle cell anemia. Disclosures: No relevant conflicts of interest to declare.

2007 ◽  
Vol 27 (12) ◽  
pp. 4551-4565 ◽  
Author(s):  
Shin-Il Kim ◽  
Scott J. Bultman ◽  
Huie Jing ◽  
Gerd A. Blobel ◽  
Emery H. Bresnick

ABSTRACT GATA factors orchestrate hematopoiesis via multistep transcriptional mechanisms, but the interrelationships and importance of individual steps are poorly understood. Using complementation analysis with GATA-1-null cells and mice containing a hypomorphic allele of the chromatin remodeler BRG1, we dissected the pathway from GATA-1 binding to cofactor recruitment, chromatin loop formation, and transcriptional activation. Analysis of GATA-1-mediated activation of the β-globin locus, in which GATA-1 assembles dispersed complexes at the promoters and the distal locus control region (LCR), revealed molecular intermediates, including GATA-1-independent and GATA-1-containing LCR subcomplexes, both defective in promoting loop formation. An additional intermediate consisted of an apparently normal LCR complex and a promoter complex with reduced levels of total RNA polymerase II (Pol II) and Pol II phosphorylated at serine 5 of the carboxy-terminal domain. Reduced BRG1 activity solely compromised Pol II and serine 5-phosphorylated Pol II occupancy at the promoter, phenocopying the LCR-deleted mouse. These studies defined a hierarchical order of GATA-1-triggered events at a complex locus and establish a novel mechanism of long-range gene regulation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1207-1207
Author(s):  
Emery H. Bresnick ◽  
Hogune Im ◽  
Kirby D. Johnson ◽  
Jeffrey A. Grass

Abstract Defining factors and signals that establish and maintain the native nucleoprotein structure of endogenous chromatin domains represents a powerful approach for elucidating transcriptional mechanisms. In adult erythroid cells, the locus control region (LCR) and the adult beta-globin genes of the murine beta-globin locus are highly enriched in acetylated histones H3 and H4 (acH3, acH4) and H3 methylated at lysine 4 (H3-meK4). By contrast, the embryonic beta-globin genes reside in a broad region of reduced acetylation. Histone H3 methylated at lysine 79 (H3-meK79) is highly enriched at the adult beta-globin genes, but not at the LCR. To elucidate the molecular steps in beta-globin transcriptional activation, genetic complementation experiments were conducted in GATA-1-null G1E cells containing an estrogen receptor hormone binding domain-GATA-1 fusion protein (ER-GATA-1). Kinetic analysis of ER-GATA-1 occupancy of chromatin and establishment of the histone modification pattern by chromatin immunoprecipitation (ChIP) revealed that GATA-1 occupies multiple regions within the LCR prior to the beta-major promoter. Chromatin accessibility at the promoter was low until ER-GATA-1 assembled into regulatory complexes at the LCR. Subsequently, ER-GATA-1 accessed the beta-major promoter, induced acH3, RNA polymerase II (Pol II) recruitment, and elevated H3-meK79. Acquisition of transcriptional competence appears to require establishment of H3-meK4, which is GATA-1-independent. Blocking transcriptional elongation did not erase H3-meK79, indicating that maintenance of H3-meK79 does not require ongoing elongation. Analysis of N-terminal GATA-1 deletion mutants that retain Friend of GATA-1 (FOG-1) binding and DNA binding activities revealed that FOG-1 binding and DNA binding activities are insufficient for Pol II recruitment and chromatin modification at the promoter. These results support a model in which ER-GATA-1 binding to the LCR increases acH3 at the promoter as an early event in transcriptional activation, which is tightly coupled to ER-GATA-1 access to the promoter, increased promoter accessibility, and Pol II recruitment. Increased promoter accessibility, which likely permits ER-GATA-1 access to the promoter, precedes maximal induction of H3-meK79, a late event in activation. Given the dynamic regulation of H3-meK79 by GATA-1 and NF-E2 and the modulation of H3-meK79 levels during erythropoiesis, we propose that H3-meK79 is a crucial signal that controls the rate of beta-globin transcription. Studies are underway to test this hypothesis and to dissect mechanisms underlying the requirement of N-terminal sequences of GATA-1 for Pol II recruitment and chromatin modification. Furthermore, having identified individual steps in transcriptional activation of the endogenous beta-globin genes, we are testing whether inducers of human fetal hemoglobin affect these specific steps. GATA-1 has been reported by the Crispino group to be expressed as an N-terminally truncated species in megakaryoblastic leukemia. Defining how the N-terminus functions should therefore lead to a molecular understanding of this disorder. As the N-termini of GATA factors differ considerably, one might expect these divergent sequences to establish GATA factor-specific functions, and this prediction is being tested via detailed analysis of the activities of chimeric GATA factors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1864-1864
Author(s):  
Xingguo Li ◽  
Xin Hu ◽  
Zhuo Zhou ◽  
Yi Qiu ◽  
Gary Felsenfeld ◽  
...  

Abstract Communication between distal enhancers and proximal promoters is critical in controlling proper transcription of genes. However, the functional link between certain histone modifications and the formation of long-range chromatin interactions involved in transcriptional activation remains unknown. In the globin locus, the b-globin genes are regulated by highly organized chromatin structure that juxtaposes the locus control region (LCR) located far upstream of the genes with the proximal b-major globin promoter (bmajpromoter). We report here that the localized asymmetric dimethylation of Arg3 at histone H4 tails (dimethyl H4R3) catalyzed by the methyltransferase PRMT1 is essential for establishing the long-range chromatin interactions between the LCR and the bmaj-promoter and strongly correlates with the activation of adult b-globin gene transcription. In addition, dimethyl H4R3 potentiates the recruitment of histone acetyltransferases (HATs), CBP and PCAF, and is required for the establishment of subsequent histone acetylation at the globin locus. Suppression of PRMT1 activity disrupts the recruitment of transcription complexes, TBP and RNA polymerase II (RNA Pol II), at the active b-globin promoter, but not at the LCR. Taken together, our data implicate PRMT1-mediated dimethylation of H4R3 in the regulation of long-range enhancer/promoter communications, which are required for the efficient recruitment of transcription complexes to the active gene promoter.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2686-2686
Author(s):  
Dorothy Tuan ◽  
Wenhu Pi

Abstract Retrotransposons including endogenous retroviruses and their solitary long terminal repeats (LTRs) comprise over 40% of the human genome. Many of them are located in intergenic regions far from genes. Whether these intergenic retrotransposons serve beneficial host functions was not known. In the human b-globin gene locus, an ERV-9 LTR retrtransposon is located near the 5’ end of the locus control region (LCR) at 40-70 kb upstream of the human fetal g- and adult b-globin genes. To address the functional significance of the intergenic ERV-9 LTR, we generated transgenic (Tg) mice carrying a 100 Kb BAC clone spanning the entire human b-globin gene locus from the ERV-9 LTR to b-globin gene and showed that the LTR retrotransposon serves long-range, beneficial host function (Pi et al., PNAS 2010): The ERV-9 LTR containing multiple CCAAT and GATA motifs competitively recruits high concentration of NF-Y and GATA-2 present in low abundance in adult erythroid cells to assemble an LTR/RNA polymerase II complex. Deletion of the ERV-9 LTR by Cre-loxP mediated in situ recombination in the BAC Tg mice suppresses transcription of b-globin gene but activates transcription of g-globin gene. The results indicate that the ERV-9 LTR activates transcription of b-globin gene in erythroid cells during development. Therefore, LTR deletion drastically suppressed b-globin gene and re-activated g-globin gene through a competitive mechanism of globin gene switching. Alternatively, the primary effect of the ERV-9 LTR could be to suppress g-globin gene during development. Therefore, LTR deletion re-activated g-globin gene, which then suppressed transcription of b-globin gene. To differentiate between these two possibilities, we utilized Mx1-Cre mice to conditionally delete the ERV-9 LTR in the erythroid cells of the adult BAC transgene mice, in which g-globin gene was already silenced and b-globin gene fully activated. If the primary target of the ERV-9 LTR enhancer complex was g-globin gene, deletion of the ERV-9 LTR should not be able to activate the already silenced g-globin gene nor to suppress the fully active b-globin gene. However, the same effect on transcriptional suppression of b-globin gene and re-activation of g-globin gene was observed. These results indicate that the primary target of the ERV-9 LTR is the b-globin gene and not the g-globin gene. The molecular factors underlying the preferential interaction between the ERV-9 LTR and the b-globin gene are under investigation and will be presented Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3575-3575
Author(s):  
Milind C Mahajan ◽  
Subhradip Karmakar ◽  
Sherman M. Weissman

Abstract The human alpha globin genes are controlled by DNase hypersensitive sites (HS) HS-4, HS-8, HS-10, HS-33 and HS-40 upstream of the ζ gene. Among these, HS40 functions as a strong enhancer of the alpha like genes. The alpha globin genes are situated amidst actively transcribing genes, but are transcriptionally silent in non-erythroid cells including hematopoietic progenitor cells We have undertaken an analysis of the chromatin structure of the alpha globin locus, recruitment of transcription factors, and the transcriptional activity of the locus in CD34+ hematopoietic progenitor cells and upon their differentiation into erythroid cells. Chromatin immunoprecipitation (ChIP) followed by PCR analysis of all the regulatory and structural segments of the α-globin locus were performed using antibodies against chemically modified tails of histone H3, the insulator binding factor CTCF, transcription factors such as GATA-1 and NF-E2, and Pol II. Both H3Me2K4 and H3AcK9 modifications were present at HS48 and HS33 in CD34+ cells and substantially increase when these cells are differentiated into erythroid lineage. At the HS40 region, these modifications were present at a low level in CD34+ cells and did not change during erythroid differentiation. Among the α-like gene promoters, we find these modifications at the Mu and theta gene promoters in CD34+ cells and they increase during erythropoiesis. These modifications were absent at the zeta gene promoter consistent with the inactivity of this gene during definitive erythropoiesis. Overall the dominant HS40 enhancer possesses moderate levels of H3Me2K4 and H3AcK9 modifications, and its cognate major a-globin promoter is devoid of these modifications in CD34+ cells even when these cells are differentiated into erythroid lineage. The entire α-globin locus including the HS enhancer regions and a-like gene promoters did not contain the unphosphorylated (initiation) form of Pol II recruitment in CD34+ cells. When these cells differentiated into the erythroid lineage, Pol II was recruited at the HS40 and HS48 regions and at the Mu and theta promoters. Rearrangement of the CTCF binding sites at the α-globin locus occurs during differentiation of CD34+ cells into the erythroid lineage. In CD34+ cells, as in HeLa cells, the α-globin genes are flanked by multiple CTCF binding events at the 5′ and 3′ ends of the locus. At the 5′ end of the locus, the HS40 and HS48 sequences were surrounded by four CTCF binding sites at HS33, HS46, HS55 and HS90. At the 3′ end of the locus CTCF was observed at the theta globin promoter and at the 3′ end of the theta globin gene. Upon differentiation of the CD34+ cells into the erythroid pathway, CTCF recruitment is significantly reduced at HS90 and HS46 sequences, while the sites at HS55 and HS33 show increased CTCF binding. Thus, in contrast to the CD34+ cells, the HS40 and HS48 sequences are y flanked by two CTCF recruitment sites in erythroid cells. Such a differential placement of CTCF binding sites suggests that differential interaction among CTCF sites may regulate the effects of the HS-40 enhancer. In erythroid cells, a strong HS40 enhancer formed by virtue of the recruitment of the enhancer factors can overcome blocking by the downstream flanking CTCF site and this might be mediated by specific interactions between the two flanking insulators. The CTCF binding at the 3′ end of the theta globin gene is abolished during erythropoiesis of CD34+ cells. However, the recruitment of CTCF at the theta globin promoter is unchanged suggesting that the theta globin may be insulated by the influence of the α-globin enhancer sequences. We have detected transcripts from parts of the theta and zeta genes and intergenic regions in HeLa, NB4 and 06990 lymphoblastoid cells and primary erythroid cells in culture. The transcription of the locus was localized to certain regions, suggesting that there may be unappreciated transcriptional regulatory elements within the locus.


2009 ◽  
Vol 425 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Sabine Wenzel ◽  
Berta M. Martins ◽  
Paul Rösch ◽  
Birgitta M. Wöhrl

The eukaryotic transcription elongation factor DSIF [DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) sensitivity-inducing factor] is composed of two subunits, hSpt4 and hSpt5, which are homologous to the yeast factors Spt4 and Spt5. DSIF is involved in regulating the processivity of RNA polymerase II and plays an essential role in transcriptional activation of eukaryotes. At several eukaryotic promoters, DSIF, together with NELF (negative elongation factor), leads to promoter-proximal pausing of RNA polymerase II. In the present paper we describe the crystal structure of hSpt4 in complex with the dimerization region of hSpt5 (amino acids 176–273) at a resolution of 1.55 Å (1 Å=0.1 nm). The heterodimer shows high structural similarity to its homologue from Saccharomyces cerevisiae. Furthermore, hSpt5-NGN is structurally similar to the NTD (N-terminal domain) of the bacterial transcription factor NusG. A homologue for hSpt4 has not yet been found in bacteria. However, the archaeal transcription factor RpoE” appears to be distantly related. Although a comparison of the NusG-NTD of Escherichia coli with hSpt5 revealed a similarity of the three-dimensional structures, interaction of E. coli NusG-NTD with hSpt4 could not be observed by NMR titration experiments. A conserved glutamate residue, which was shown to be crucial for dimerization in yeast, is also involved in the human heterodimer, but is substituted for a glutamine residue in Escherichia coli NusG. However, exchanging the glutamine for glutamate proved not to be sufficient to induce hSpt4 binding.


2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Aimee Iberg-Badeaux ◽  
Samuel Collombet ◽  
Benoit Laurent ◽  
Chris van Oevelen ◽  
Kuo-Kai Chin ◽  
...  

ABSTRACT Short-term and long-term transcriptional memory is the phenomenon whereby the kinetics or magnitude of gene induction is enhanced following a prior induction period. Short-term memory persists within one cell generation or in postmitotic cells, while long-term memory can survive multiple rounds of cell division. We have developed a tissue culture model to study the epigenetic basis for long-term transcriptional memory (LTTM) and subsequently used this model to better understand the epigenetic mechanisms that enable heritable memory of temporary stimuli. We find that a pulse of transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) induces LTTM on a subset of target genes that survives nine cell divisions. The chromatin landscape at genes that acquire LTTM is more repressed than at those genes that do not exhibit memory, akin to a latent state. We show through chromatin immunoprecipitation (ChIP) and chemical inhibitor studies that RNA polymerase II (Pol II) elongation is important for establishing memory in this model but that Pol II itself is not retained as part of the memory mechanism. More generally, our work reveals that a transcription factor involved in lineage specification can induce LTTM and that failure to rerepress chromatin is one epigenetic mechanism underlying transcriptional memory.


2000 ◽  
Vol 20 (6) ◽  
pp. 1993-2003 ◽  
Author(s):  
Shau-Ching Wen ◽  
Karim Roder ◽  
Kuang-Yu Hu ◽  
Irene Rombel ◽  
Narender R. Gavva ◽  
...  

ABSTRACT The HS-40 enhancer is the major cis-acting regulatory element responsible for the developmental stage- and erythroid lineage-specific expression of the human α-like globin genes, the embryonic ζ and the adult α2/α/1. A model has been proposed in which competitive factor binding at one of the HS-40 motifs, 3′-NA, modulates the capability of HS-40 to activate the embryonic ζ-globin promoter. Furthermore, this modulation was thought to be mediated through configurational changes of the HS-40 enhanceosome during development. In this study, we have further investigated the molecular basis of this model. First, human erythroid K562 cells stably integrated with various HS-40 mutants cis linked to a human α-globin promoter-growth hormone hybrid gene were analyzed by genomic footprinting and expression analysis. By the assay, we demonstrate that factors bound at different motifs of HS-40 indeed act in concert to build a fully functional enhanceosome. Thus, modification of factor binding at a single motif could drastically change the configuration and function of the HS-40 enhanceosome. Second, a specific 1-bp, GC→TA mutation in the 3′-NA motif of HS-40, 3′-NA(II), has been shown previously to cause significant derepression of the embryonic ζ-globin promoter activity in erythroid cells. This derepression was hypothesized to be regulated through competitive binding of different nuclear factors, in particular AP1 and NF-E2, to the 3′-NA motif. By gel mobility shift and transient cotransfection assays, we now show that 3′-NA(II) mutation completely abolishes the binding of small MafK homodimer. Surprisingly, NF-E2 as well as AP1 can still bind to the 3′-NA(II) sequence. The association constants of both NF-E2 and AP1 are similar to their interactions with the wild-type 3′-NA motif. However, the 3′-NA(II) mutation causes an approximately twofold reduction of the binding affinity of NF-E2 factor to the 3′-NA motif. This reduction of affinity could be accounted for by a twofold-higher rate of dissociation of the NF-E2–3′-NA(II) complex. Finally, we show by chromatin immunoprecipitation experiments that only binding of NF-E2, not AP1, could be detected in vivo in K562 cells around the HS-40 region. These data exclude a role for AP1 in the developmental regulation of the human α-globin locus via the 3′-NA motif of HS-40 in embryonic/fetal erythroid cells. Furthermore, extrapolation of the in vitro binding studies suggests that factors other than NF-E2, such as the small Maf homodimers, are likely involved in the regulation of the HS-40 function in vivo.


2020 ◽  
Vol 295 (12) ◽  
pp. 3990-4000 ◽  
Author(s):  
Sandeep Singh ◽  
Karol Szlachta ◽  
Arkadi Manukyan ◽  
Heather M. Raimer ◽  
Manikarna Dinda ◽  
...  

DNA double-stranded breaks (DSBs) are strongly associated with active transcription, and promoter-proximal pausing of RNA polymerase II (Pol II) is a critical step in transcriptional regulation. Mapping the distribution of DSBs along actively expressed genes and identifying the location of DSBs relative to pausing sites can provide mechanistic insights into transcriptional regulation. Using genome-wide DNA break mapping/sequencing techniques at single-nucleotide resolution in human cells, we found that DSBs are preferentially located around transcription start sites of highly transcribed and paused genes and that Pol II promoter-proximal pausing sites are enriched in DSBs. We observed that DSB frequency at pausing sites increases as the strength of pausing increases, regardless of whether the pausing sites are near or far from annotated transcription start sites. Inhibition of topoisomerase I and II by camptothecin and etoposide treatment, respectively, increased DSBs at the pausing sites as the concentrations of drugs increased, demonstrating the involvement of topoisomerases in DSB generation at the pausing sites. DNA breaks generated by topoisomerases are short-lived because of the religation activity of these enzymes, which these drugs inhibit; therefore, the observation of increased DSBs with increasing drug doses at pausing sites indicated active recruitment of topoisomerases to these sites. Furthermore, the enrichment and locations of DSBs at pausing sites were shared among different cell types, suggesting that Pol II promoter-proximal pausing is a common regulatory mechanism. Our findings support a model in which topoisomerases participate in Pol II promoter-proximal pausing and indicated that DSBs at pausing sites contribute to transcriptional activation.


2004 ◽  
Vol 24 (14) ◽  
pp. 6419-6429 ◽  
Author(s):  
Peter Eriksson ◽  
Debabrata Biswas ◽  
Yaxin Yu ◽  
James M. Stewart ◽  
David J. Stillman

ABSTRACT The Saccharomyces cerevisiae Nhp6 protein is related to the high-mobility-group B family of architectural DNA-binding proteins that bind DNA nonspecifically but bend DNA sharply. Nhp6 is involved in transcriptional activation by both RNA polymerase II (Pol II) and Pol III. Our previous genetic studies have implicated Nhp6 in facilitating TATA-binding protein (TBP) binding to some Pol II promoters in vivo, and we have used a novel genetic screen to isolate 32 new mutations in TBP that are viable in wild-type cells but lethal in the absence of Nhp6. The TBP mutations that are lethal in the absence of Nhp6 cluster in three regions: on the upper surface of TBP that may have a regulatory role, near residues that contact Spt3, or near residues known to contact either TFIIA or Brf1 (in TFIIIB). The latter set of mutations suggests that Nhp6 becomes essential when a TBP mutant compromises its ability to interact with either TFIIA or Brf1. Importantly, the synthetic lethality for some of the TBP mutations is suppressed by a multicopy plasmid with SNR6 or by an spt3 mutation. It has been previously shown that nhp6ab mutants are defective in expressing SNR6, a Pol III-transcribed gene encoding the U6 splicing RNA. Chromatin immunoprecipitation experiments show that TBP binding to SNR6 is reduced in an nhp6ab mutant. Nhp6 interacts with Spt16/Pob3, the yeast equivalent of the FACT elongation complex, consistent with nhp6ab cells being extremely sensitive to 6-azauracil (6-AU). However, this 6-AU sensitivity can be suppressed by multicopy SNR6 or BRF1. Additionally, strains with SNR6 promoter mutations are sensitive to 6-AU, suggesting that decreased SNR6 RNA levels contribute to 6-AU sensitivity. These results challenge the widely held belief that 6-AU sensitivity results from a defect in transcriptional elongation.


Sign in / Sign up

Export Citation Format

Share Document