Live Cell Imaging Captures Immune Cell-Mediated Killing of Precursor-B Acute Lymphoblastic Leukemia Cells Targeted with Anti-CD19 (Medi-551) Antibodies: Support for Macrophage and NK Cell In Vivo Activity

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1522-1522
Author(s):  
Ksenia Matlawska-Wasowska ◽  
Dennis Cook ◽  
Samuel R. Stevens ◽  
Elizabeth K. Ward ◽  
Ronald Herbst ◽  
...  

Abstract Abstract 1522 Precursor-B acute lymphoblastic leukemia (pre-B ALL) is the most common malignancy in children and can be cured in a majority of patients. However, cure remains elusive in approximately 20% of patients for reasons that are not well understood. Importantly, survivors commonly develop morbidities that result from dose-intensified treatment with cytotoxic drugs. Here, we investigate the tumoricidal effects of a novel humanized anti-CD19 monoclonal antibody (Medi-551). The a-fucosylated form of this antibody has increased affinity to human FcgammaRIII (CD16) receptor, present on the surface of NK cells and macrophages, mediating antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly and thus remain accessible for effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human NK cells and macrophages (effector cells) against four pre-B ALL cell lines (697, Nalm 6, MHH-Call 3, RS 4;11), as well as freshly isolated patient blasts. We report results of live cell fluorescent imaging studies, characterizing the formation of immunological synapses between Medi 551-bound target leukemia cells and effector cells, as well as the kinetics of both NK-mediated killing and macrophage phagocytosis. The number of the CD19 receptors present on the cell surface is shown to be a factor in effector-mediated killing of Medi-551 targeted leukemia cells. Further, genetic polymorphisms in FcgammaRIII (158 F/V, V/V or F/F) affected in vitro ADCC and ADCP activities with FcgammaRIII 158 V homo- or heterozygotes showing the strongest activity. We also evaluated the efficacy of Medi-551 in a human pre-B ALL murine xenograft model. SCID mice were engrafted with 697 pre-B ALL cells and received either vehicle alone or Medi-551 (3 mg/kg; twice weekly for a total of 5 doses); treatment was started at day 5 after engraftment. Medi-551 treatment markedly lowered disease burden in blood, liver and bone marrow. The lack of cure is consistent with impaired roles for NK cells in this model, since murine NK cells lack FcgammaRIV. Experiments are in progress to improve the model through adoptive transfer of human NK cells. Taken together, the in vitro and in vivo data show that Medi-551 has strong activity against pre-B ALL and support a move forward to early phase trials in this disease. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1322-1322
Author(s):  
Manabu Kusakabe ◽  
Ann Chong Sun ◽  
Kateryna Tyshchenko ◽  
Rachel Wong ◽  
Aastha Nanda ◽  
...  

Abstract Mechanistic studies in human cancer have relied heavily on established cell lines and genetically engineered mouse models, but these are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts (PDX); however, as an experimental model these are hampered by their variable genetic background, logistic challenges in establishing and distributing diverse collections, and the fact they cannot be independently reproduced. We report here a completely synthetic, efficient, and highly reproducible means for generating T-cell acute lymphoblastic leukemia (T-ALL) de novo by lentiviral transduction of normal CD34+ human cord blood (CB) derived hematopoietic progenitors with a combination of known T-ALL oncogenes. Transduced CB cells exhibit differentiation arrest and multi-log expansion when cultured in vitro on OP9-DL1 feeders, and generate serially transplantable, aggressive leukemia when injected into immunodeficient NSG mice with latencies as short as 80 days (median 161 days, range 79-321 days). RNA-seq analysis of synthetic CB leukemias confirmed their reproducibility and similarity to PDX tumors, while whole exome sequencing revealed ongoing clonal evolution in vivo with acquisition of secondary mutations that are seen recurrently in natural human disease. The in vitro component of this synthetic system affords direct access to "pre-leukemia" cells undergoing the very first molecular changes as they are redirected from normal to malignant developmental trajectories. Accordingly, we performed RNA-seq and modified histone ChIP-seq on nascently transduced CB cells harvested from the first 2-3 weeks in culture. We identified coordinate upregulation of multiple anterior HOXB genes (HOXB2-B5) with contiguous H3K27 demethylation/acetylation as a striking feature in these early pre-leukemia cells. Interestingly, we also found coordinate upregulation of these same HOXB genes in a cohort of 264 patient T-ALLs (COG TARGET study) and that they defined a subset of patients with significantly poorer event-free survival (Log-rank p-value = 0.0132). Patients in the "HOXB high" subgroup are distinct from those with ETP-ALL, but are enriched within TAL1, NKX2-1, and "unknown" transcription factor genetic subgroups. We further show by shRNA-mediated knockdown that HOXB gene expression confers growth advantage in nascently transduced CB cells, established synthetic CB leukemias, and a subset of established human T-ALL cell lines. Of note, while there is prior literature on the role of HOXA genes in AML and T-ALL, and of HOXB genes in normal HSC expansion, this is the first report to our knowledge of a role for HOXB genes in human T-ALL despite over 2 decades of studies relying mostly on mouse leukemia and cell line models. The synthetic approach we have taken here allows investigation of both early and late events in human leukemogenesis and delivers an efficient and reproducible experimental platform that can support functional testing of individual genetic variants necessary for precision medicine efforts and targeted drug screening/validation. Further, since all tumors including PDXs continue to evolve during serial propagation in vivo, synthetic tumors represent perhaps the only means by which we can explore early events in cellular transformation and segregate their biology from confounding effects of multiple and varied secondary events that accumulate in highly "evolved" samples. Disclosures Steidl: Seattle Genetics: Consultancy; Tioma: Research Funding; Bristol-Myers Squibb: Research Funding; Roche: Consultancy; Juno Therapeutics: Consultancy; Nanostring: Patents & Royalties: patent holding.


Blood ◽  
2017 ◽  
Vol 130 (13) ◽  
pp. 1543-1552 ◽  
Author(s):  
Denis M. Schewe ◽  
Ameera Alsadeq ◽  
Cornelia Sattler ◽  
Lennart Lenk ◽  
Fotini Vogiatzi ◽  
...  

Key Points Fc-engineered CD19 antibody cures MRD in ∼50% of mice xenografted with ALL cells and is highly synergistic in combination with chemotherapy. Macrophages are important effector cells for this antibody in vitro and in vivo.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2565-2565
Author(s):  
Eun Ji Gang ◽  
Yao-Te Hsieh ◽  
Huimin Geng ◽  
Jennifer Pham ◽  
Markus Muschen ◽  
...  

Abstract Abstract 2565 Chemotherapy drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem, resulting in reduced treatment efficacy and relapse. The bone marrow environment (BME) has been shown to promote resistance of leukemia cells towards chemotherapy, which has been attributed to several proteins, including integrins. Our analysis of 207 children with high-risk (BCR/ABL1−) pre-B ALL revealed that high expression of the laminin-binding integrin VLA6 (alpha6beta1) portends poor clinical outcomes in patients with minimal residual disease (MRD+) on day 29 of induction. In addition, our comparative analysis of pre-B leukemia and normal B-cells revealed that VLA6 is preferentially upregulated on BCR/ABL1+ pre-B ALL blasts. Alterations in adhesion properties have been described for BCR/ABL1+ (p210) chronic myeloid leukemia. The role of integrins and integrin VLA6 in particular for cell adhesion-mediated drug resistance (CAM-DR) in BCR/ABL1+ (p210) ALL has not been addressed. With respect to its role for normal immature hematopoietic cells, contradictory observations have been reported. Therefore, we hypothesized that VLA6-mediated adhesion of ALL cells to the bone marrow stromal niche contributes to drug resistance. We evaluated the role of VLA6 in BCR-ABL1+ leukemia using two of our established models of leukemia, a conditional knockout model of VLA6 in murine BCR-ABL1+ leukemia and a xenograft model of human BCR-ABL1+ leukemia. VLA6fl/fl cells were oncogenically transformed using BCR-ABL1 (p210) and cultured under lymphoid-skewing conditions. Induction of pre- B (B220+ CD19+) ALL was confirmed by flow cytometry. Subsequent transduction with CreERT2 or EmptyERT2 generated leukemia cells in which VLA6 ablation could be induced (CreERT2) or not (EmptyERT2) by addition of Tamoxifen. Conditional ablation of VLA6 in vitro decreased adhesion significantly compared to undeleted controls (19.7%±8.1% vs. 87.7%±6.0%; p=0.00041) and increased apoptosis of murine BCR-ABL1+ leukemia cells as determined by analysis of Annexin V−/7-AAD− viable cells by flow cytometry (VLA6 deleted vs. undeleted: 35.3%±1.1% vs. 75.1%±1.2%; p=0.0001). Moreover, VLA6 deletion sensitized murine ALL to a tyrosine kinase inhibitor (TKI), Nilotinib (p=0.022, 45.6%±2.4% vs. 73.3%±13.0%). To test the effect of VLA6 deletion on leukemic progression in vivo, VLA6 BCR/ABL1+ pre-B (B220+ CD19+) CreERT2+ or control transduced ALL cells were transferred into NOD/SCID mice. 3 days thereafter, VLA6 deletion was induced by Tamoxifen administration to all animals in 2 cycles for 5 days. In vivo deletion of VLA6 in delayed leukemia progression compared to VLA6 competent controls from a median survival time (MST) of 30 days post-leukemia injection to a MST of 43 days post-leukemia injection (p=0.008 Log-rank test). In vivo deletion of VLA6 in combination with Nilotinib treatment delayed leukemia progression compared to VLA6 competent, as Nilotinib-treated control animals have uniformly died of leukemia with a MST of 39.5 days, however the Nilotinib treated VLA6 deleted group is completely alive and is still being monitored (p=0.0025). When VLA6 was ablated before transfer and recipients were observed for leukemia progression, the recipients of VLA6–deficient murine leukemia cells also showed attenuated leukemia progression compared to recipients of VLA6 competent cells. Moreover, we show that VLA6 blockade de-adheres primary ALL cells from their cognate counter receptor laminin in vitro, and sensitizes primary ALL cells to TKI Taken together, modulating the function of VLA6 in ALL offers a new approach to overcome drug resistance in ALL. Given that VLA6 is probably largely redundant for normal immature hematopoiesis, this approach may be preferable over targeting of other integrins in BCR/ABL1+ leukemias on which VLA6 is expressed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1420-1420 ◽  
Author(s):  
Hye Na Kim ◽  
Cydney Nichols ◽  
Enzi Ji Jiang ◽  
Nour Abdel-Azim ◽  
Ariana Coba ◽  
...  

Abstract Introduction: Acute lymphoblastic leukemia is the most prevalent form of cancer affecting children with 2,500-3,500 new cases per year. More effective targeted therapies have yielded a current five-year survival rate of at least 85% for children; however relapsed disease, as well as harsh side effects of treatment, remain prevalent hurdles for many patients. Cells harbored by the bone marrow comprise minimal residual disease that may contribute to later re-expansion of the tumor population following treatment, also known as cell adhesion mediated drug resistance (CAM-DR). Bone marrow stromal cell contact has been shown to upregulate phosphorylated AKT, promoting survival of ALL cells. We investigate a new dual targeted therapy, Morpholinothienopyrane (SF2535), which inhibits both PI3Kdelta and BRD4, each key molecules in signal transduction pathways between microenvironment and leukemia cells. PI3Kdelta is a central nodal molecule in outside-in pathways including cell-cell interactions mediated by integrins. BRD4, a member of the bromodomain and extraterminal domain (BET) family of proteins which bind acetylated lysines at promoter and enhancer regions, is another key player involved in regulation of transcription of myc family transcription factors. In addition to transcriptional regulation by BRD4, myc is also regulated by PI3kdelta which inhibits GSK3beta-mediated degradation of myc. We hypothesize that this dual inhibitor, SF2535, will disrupt signaling between leukemia cells and the bone marrow microenvironment, thus addressing CAM-DR. Methods/Results: In vitro and in vivo BRD4 and PI3Kdelta target downregulation was measured by western blot including assessment of myc, AKT, and phosphorylated AKT. Cells were starved in vitro in serum-free conditions for 18 hours followed by treatment with SF2535 and stimulation with serum. Levels of phosphorylated AKT were noticeably decreased in SF2535 treated cells compared with DMSO control or JQ1 (BET inhibitor) treatment alone. Truncation of microenvironmental outside-in signaling via inhibition of PI3Kdelta and BRD4 was measured via transwell migration assay. Primary ALL cells were cultured on top of a porous membrane with SDF-1alpha in the chamber below. Significantly less primary ALL cells migrated toward SDF-1alpha when treated with SF2535 compared to DMSO, CAL101 (PI3Kdelta inhibitor), or JQ1 (BET inhibitor). The combination of SF2535 with vincristine, dexamethasone, and L-asparaginase (VDL), the backbone of induction therapy for many ALL patients, was evaluated in vitro. Primary tumor cells were co-cultured on irradiated OP-9 murine stromal cells and treated with SF2535, VDL, or SF2535 and VDL combined. Apoptosis in response to treatment was measured via AnnexinV and 7-AAD flow cytometry. The combination of SF2535 and VDL showed significantly more cell death compared to either SF2535 or VDL alone at three concentrations of each treatment. Additionally, CalcuSyn software was used to assess putative additive versus synergistic effects of this combination. CalcuSyn analysis of VDL and SF2535 combination compared to either SF2535 or VDL treatment alone shows synergy (defined as a combination index of 0.3-0.7) between these two therapies used on sample LAX7R after 1 day of treatment. Discussion: Thus far we have shown that this novel inhibitor decreases expression of downstream targets of PI3Kdelta (phosphorylated AKT) and BRD4 (C-myc), inhibits migration of ALL toward bone marrow stromal factors, and increases apoptosis of primary patient samples when combined with VDL compared to VDL alone. Most notably, we have determined a synergistic relationship between SF2535 and VDL in vitro, suggesting a role for this novel therapy in sensitizing cells to chemotherapy. The use of a single agent against both PI3Kdelta and BRD4 ultimately aimed at downregulation of myc levels provides the possibility of more effective, less toxic therapeutic option that addresses CAM-DR faced by many patients. While ongoing experiments in vitro and in vivo will provide a more robust picture of the efficacy of this drug, our preliminary data suggest promise for this novel application of BRD4 and PI3Kdelta inhibition in the context of acute lymphoblastic leukemia. Disclosures Durden: SignalRx Pharmaceuticals, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1845-1845 ◽  
Author(s):  
Arinobu Tojo ◽  
Kiyoko Izawa ◽  
Rieko Sekine ◽  
Tokiko Nagamura-Inoue ◽  
Seiichiro Kobayashi

Abstract Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL) is one of the most intractable hematological malignancies, readily acquires resistance to chemotherapeutic drugs including imatinib mesylate (IM), and shows a high relapse rate even after allogeneic stem cell transplantation. Nevertheless, primary blast cells are generally susceptible to apoptotic cell death in sort-term suspension culture after isolation from patients with Ph-ALL. We established two Ph-ALL cell lines and characterized their growth properties supported by adhesive interaction with a murine bone marrow stromal cell line, HESS-5. IMS-PhL1 (L1) cells mainly expressed p210-type BCR-ABL mRNA with wild type sequences in the ABL kinase domain and were weakly positive for p190-type mRNA. IMS-PhL2 (L2) cells exclusively expressed p190-type transcripts with Y253H mutation and showed much lower sensitivity to imatinib than L1 cells. The growth of L1 cells was slowly autonomous in suspension culture, but became more vigorous and their apoptosis was prevented by co-culture with HESS-5 cells. In contrast, the sustained growth and survival of L2 cells was absolutely dependent on direct contact with HESS-5 cells and did not respond to soluble cytokines including SCF, IL3and IL7. Both cell lines adhered to and migrated beneath the HESS-5 cell layer, resulting in the formation of cobblestone areas. This migration was significantly inhibited by the pretreatment of those with a neutralizing antibody against α4-integrin. While non-adherent L1 cells were eradicated by 1 mM IM, a portion of adherent L1 cells could survive even at 10 mM IM. Similarly, adherent L2 cells considerably resisted prolonged exposure to 10 mM IM. Intravenous injection of both cell lines caused leukemia in NOD-SCID mice after distinct latent periods. Leukemia cells appeared in peripheral blood, bone marrow as well as spleen. Interestingly, expression of α5-integrin was significantly down-regulated in both leukemia cells collected from those tissues, but was restored after co-culture with HESS-5. The study of L1 and L2 cells in vitro and in vivo will not only contribute to further insights into microenvironmental regulation of clonal maintenance and progression of Ph-ALL but also provide a unique model for experimental therapeutics against Ph-ALL. Figure Figure


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 361-361
Author(s):  
Degryse Sandrine ◽  
Charles E de Bock ◽  
Carmen Vicente ◽  
Luk Cox ◽  
Olga Gielen ◽  
...  

Abstract JAK3 is a cytosolic tyrosine kinase that associates with the common gamma chain in different cytokine receptors, in which the JAK1 kinase is another essential signaling protein. Large scale sequencing efforts recently identified mutations in the IL7R, JAK1 or JAK3 genes in about 25% of T-cell acute lymphoblastic leukemia (T-ALL) cases, with JAK3 being the most frequently (15% of T-ALL cases) mutated gene in this pathway. To determine if all mutations in JAK3 are true oncogenic mutations, we generated expression plasmids for 16 JAK3 mutants (M511I, A572T, A573V, R657Q, R657W, V674A, V678M, V678L, R775C, L857Q, Q865E, L875H, P906S, R925S, E958K, E1106G) and determined the in vitro and in vivo transforming properties, as well as their sensitivity to JAK kinase inhibitors. For 12 of 16 mutants expression in the IL3-dependent Ba/F3 cell line resulted in transformation to IL3 independent growth. Similarly, expression of the transforming mutants in IL7-receptor reconstituted 293T cells confirmed their ligand independent activation, while this was not observed for the non-transforming mutants. These 4 non-transforming mutants are likely to be passenger mutations, illustrating that results from sequencing always need to be confirmed by functional assays to distinguish driver mutations from passenger mutations. Most JAK3 mutants, except JAK3 L857Q and JAK3 L875H, were dependent on JAK1 kinase activity for their transforming capacities. In agreement with this, we observed that Ba/F3 cells transformed by the JAK1 dependent JAK3 mutants could be inhibited by ruxolitinib, a JAK1/JAK2 selective inhibitor, while the JAK3 L857Q and JAK3 L875H transformed cells were significantly less sensitive to ruxolitinib treatment. As expected, all JAK3 mutants were sensitive to the JAK3 selective inhibitor tofacitinib, except for JAK3 L875H, which showed resistance to all inhibitors tested. To determine the in vivo oncogenic properties of the JAK3 mutants, we expressed selected JAK3 mutants (M511I, A573V, L857Q, V674A and R657Q) in mouse hematopoietic cells through viral transduction. Mice transplanted with cells expressing JAK3 M511I, A573V or V674A showed a gradual increase of the WBC count and developed a T-ALL like disease within 120 to 200 days. In contrast, mice transplanted with cells expressing JAK3 L857Q or R657Q showed a lower increase in WBC count, and did present with severe splenomegaly and lymphadenopathy. Expression of JAK3 L857Q caused severe thymus hyperplasia, while the JAK3 R657Q mutant caused B-cell leukemia, illustrating that different JAK3 mutants seem to have variable oncogenic characteristics. Mice transplanted with cells expressing JAK3 M511I were treated with the JAK3 selective inhibitor tofacitinib and disease progression was followed by white blood cell count measurements. Treatment of the animals for 5 weeks with tofacitinib (oral gavage, 40 mg/kg/day) significantly decreased the disease progression compared to placebo treated mice. Moreover, we observed severe apoptosis of the leukemia cells in spleen and thymus in tofacitinib treated animals and not in placebo treated mice. However, tofacitnib treatment could not eradicate all leukemia cells, and the mice progressed when treatment was stopped. In conclusion, JAK3 is recurrently mutated in T-ALL patients, and we demonstrate that most JAK3 mutants are transforming proteins using In vitro and in vivo experiments. Our results show that JAK1 is an essential kinase for most JAK3 mutants, and that the majority of JAK3 mutants are sensitive to JAK3 and JAK1 specific inhibitors such as tofacitinib and ruxolitinib. However, some JAK3 mutants do show resistance to these inhibitors, which will need to be taken into account when trials are initiated for the treatment of ALL patients with JAK specific inhibitors. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2251-2251 ◽  
Author(s):  
Aradhana Awasthi ◽  
Janet Ayello ◽  
Carmella van de Ven ◽  
Mona Elmacken ◽  
Christopher Reggio ◽  
...  

Abstract Background: Aggressive non-Hodgkin lymphoma (NHL) represents >90% of all NHL that occur in children and adolescents. Among all NHLs, Burkitt Lymphoma (BL) is the most common NHL in children and adolescents and has an excellent prognosis (≥80% 5 yrs, EFS) following short but intense multi-agent chemotherapy (Cairo et al. Blood, 2007). Patients who relapse with CD20+ B-NHL and B cell Acute lymphoblastic leukemia (B-ALL) have a dismal prognosis, often associated with chemotherapy resistance and may require alternative therapeutic strategies (Cairo et al. JCO, 2012, Barth/Cairo et al. BJH, 2013). Rituximab (RTX) in combination with FAB 96 chemotherapy is a safe and well-tolerated and is associated with >90% EFS in children with newly diagnosed and advanced mature B-Cell NHL (Goldman/Cairo et al. Leukemia, 2013). Resistance to RTX, however, may predispose patients with CD20+ B-NHL/ALL to an increase risk of relapse and/or disease progression (Barth/Cairo et al. BJH, 2012; Tsai et al. Cl. Can. Res, 2012,). Obinutuzumab, a novel glycoengineered type II CD20 antibody, has been shown to enhance cell death and ADCC vs. RTX (Herter et al, Clinc Canc Res, 2013), and was recently approved by FDA and EMA for first line treatment of CLL in combination with chlorambucil. Objective: To evaluate anti-tumor activity of obinutuzumab vs RTX against RTX resistant and sensitive BL and pre-B-ALL tumor targets in-vitro and in-vivo in xenografted NSG mice. Methods: Raji (CD20+) and Loucy (T-ALL, CD20-), (ATCC, Manhass, VA), U698-M (CD20+, DSMZ, Germany) and Raji-4RH (provided by M. Barth, Roswell Park Cancer Institute) were cultured in RPMI with 10% FBS. For in-vitro studies, tumor cells were incubated with 100 µg/ml obinutuzumab (supplied by Christian Klein, PhD, Roche Research & Early Development, Zurich), and/or RTX for 24 hrs. Cell death was evaluated by staining with AnnexinV/7AAD and analysis by flow-cytometry. Loucy cells (CD20-) were used as the negative control. ADCC were performed with K562-IL-15-41BBL expanded NK cells (Ayello/Cairo et al. ASH, 2010) at 20:1 effector: target ratio (E: T, n=3) using an europium release assay (Perkin-Elmer).The lentiviral construct, pSico PolII-eGFP-Luc2, was transfected into Raji, Raji 4RH (RTX resistant), U698M and Loucy for in vivo evaluation by BLI. Six to 8 week old female NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ), mice, bred in-house under pathogen free conditions, were divided into 5 groups: PBS only (control), isotype control (IgG), obinutuzumab 10 mg/kg, obinutuzumab (30 mg/kg), and RTX (30 mg/kg). Mice were xenografted with intravenous injections of Luc+ Raji, Raji4RH, U698M and Loucy cells at 5x106 tumor cells/mouse. 6-8 days after tumor cell injection, mice were then injected every 7 days with the respective therapy for 8 weeks. Mice were monitored for tumor burden and survival for up to 12 weeks ( approx. 80 days) via bioluminescent imaging (BLI) using the IVIS Spectrum system. Results: Obinutuzumab compared to RTX (100 mg/ml, 24hrs), significantly enhanced cell death in Raji 45.1±3.3% vs 32.7±6.8%, (p=0.005), Raji4RH 15.8±2.2% vs 2.1±1.5% (p=0.001) and U698-M 40.5±2.9 % vs 26.36±2.6% (p=0.001) n=6. Obinutuzumab vs RTX also elicited a significant increase ADCC with K562-IL15-41BBL expanded NK cells, in Raji 73.8±8.1% vs 56.81±4.6% (p=0.001), Raji-4RH 40.0±1.6% vs 0.5±1.1%, (p=0.001), and U-698-M 70.0±6 % vs. 45.56± 0.1% (p=0.001) n=3. Further, we found that, in vivo, obinutuzumab was significantly more effective than RTX when administered at the same doses in BL (RTX resistant/sensitive) and pre-B-ALL xenografts. Overall survival in mice receiving 30 mg/kg of obinutuzumab was significantly increased when compared to mice receiving 30 mg/kg of RTX in BL; Raji (p=0.05), Raji4RH (p=0.024) and U698-M (p=0.03) (Figure1: A, B and C). Conclusion: Obinutuzumab significantly enhances cell death and NK mediates ADCC in sensitive and RTX resistant CD20+ B-NHL and B-ALL compared to RTX. These preliminary studies also demonstrate that RTX sensitive/resistant BL and pre-B-ALL xenografted mice display significantly increased survival when given 30 mg/kg of obinutuzumab and decreased tumor burden in BL and Pre-B-ALL xenografts compared to an equal dose of RTX. Obinutuzumab may be a novel agent to investigate as adjuvant therapy in patients with relapsed refractory CD20+ B-NHL and/or B-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Sign in / Sign up

Export Citation Format

Share Document