A MiR-142-3p/EGR2 Feedback Circuitry In Human CSF-1 Driven Differentiation of Monocytes Into Macrophages

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2366-2366
Author(s):  
Brice Lagrange ◽  
Nathalie Droin ◽  
Romain Aucagne ◽  
Jérôme Paggetti ◽  
Anne Largeot ◽  
...  

Abstract Abstract 2366 Colony-stimulating factor-1 (CSF-1 or M-CSF) triggers the differentiation of human peripheral blood monocytes into macrophages through and integrated cytokine/transcription factors circuitry. Using microarray profiling to explore the role of microRNAs (miRNAs) in this molecular circuitry, we identified the down-regulation of miR-142-3p in human macrophages obtained from CSF-1-treated monocytes. We show that miR-142-3p is a repressor of the transcription factor EGR2 (Early Growth Response 2) through direct 3'UTR interactions. Interestingly, EGR2 binds the promoter of the pre-miR-142-3p gene to negatively regulate its expression, identifying a self-regulatory feedback loop. Enforced expression of miR-142-3p in primary human monocytes as well as decreased expression of miR-142-3p observed in monocytes from patients with a chronic myelomonocytic leukemia further assess the link between miR-142-3p and EGR2 expression in these cells. A chemical inhibition of the Src kinase family prevents the regulation loop induced by CSF-1. Thus, our study uncovers an EGR2/miR-142-3p circuitry which regulates CSF-1 driven differentiation of human monocytes into macrophages. Disclosures: No relevant conflicts of interest to declare.

1990 ◽  
Vol 63 (01) ◽  
pp. 067-071 ◽  
Author(s):  
Joan C Castellote ◽  
Enric Grau ◽  
Maria A Linde ◽  
Nuria Pujol-Moix ◽  
Miquel LI Rutllant

SummaryIncreasing evidence suggests the involvement of leukocytes in the fibrinolytic system. Monocytes secrete pro-urokinase (Grau, Thromb Res 1989; 53: 145) and it has been shown that these cells have specific receptors for urokinase and plasminogen (Miles, Thromb Haemostas 1987; 58: 936). The aim of this study was to analyse the presence of plasminogen activator inhibitor(s) in platelet-free suspensions of human peripheral blood monocytes and polymorphonuclear leukocytes (PMN). SDS-PAGE and reverse fibrin autography showed an inhibitory band of 50 kDa in the monocyte extracts (Triton X-100) but not in the PMN extracts. Urokinase (u-PA) was mixed with increasing amounts of monocyte extract for 10 min and the mixtures were added to 125Ifibrin coated wells containing plasminogen. A dose-dependent decrease in the u-PA fibrinolytic activity was observed. The amount of inhibition increased when the monocyte releasates were preincubated with u-PA (40% inhibition after 5 min preincubation and 80% after 15 min), indicating a direct interaction between this activator and an inhibitor(s). After SDS-PAGE of monocyte extracts, immunoblotting and peroxidase staining identified both PAI1 and PAI2, with an apparent molecular weight of 47-50 kDa. Monocyte-associated PAI1 formed complexes with single chain t-PA with a molecular mass 50 kDa higher than the molecular mass of the free PAI1. However, a significant amount of PAI remained unbound to t-PA. This inactive PAI1 could have come from a rapid inactivation of the primary active PAI1. These PAI1 and PAI2 detected in human monocytes may be transcendent in the regulation of the fibrinolytic system.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Nathalie Droin ◽  
Arnaud Jacquel ◽  
Jean-Baptiste Hendra ◽  
Cindy Racoeur ◽  
Caroline Truntzer ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder that occurs in elderly patients. One of the main diagnostic criteria is the accumulation of heterogeneous monocytes in the peripheral blood. We further explored this cellular heterogeneity and observed that part of the leukemic clone in the peripheral blood was made of immature dysplastic granulocytes with a CD14−/CD24+ phenotype. The proteome profile of these cells is dramatically distinct from that of CD14+/CD24− monocytes from CMML patients or healthy donors. More specifically, CD14−/CD24+ CMML cells synthesize and secrete large amounts of alpha-defensin 1-3 (HNP1-3). Recombinant HNPs inhibit macrophage colony-stimulating factor (M-CSF)–driven differentiation of human peripheral blood monocytes into macrophages. Using transwell, antibody-mediated depletion, suramin inhibition of purinergic receptors, and competitive experiments with uridine diphosphate (UDP)/uridine triphosphate (UTP), we demonstrate that HNP1-3 secreted by CD14−/CD24+ cells inhibit M-CSF–induced differentiation of CD14+/CD24− cells at least in part through P2Y6, a receptor involved in macrophage differentiation. Altogether, these observations suggest that a population of immature dysplastic granulocytes contributes to the CMML phenotype through production of alpha-defensins HNP1-3 that suppress the differentiation capabilities of monocytes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3600-3600 ◽  
Author(s):  
Yevgeniya Kushchayeva ◽  
Darya Mishchuk ◽  
Tatiana Ugarova

Abstract Abstract 3600 Poster Board III-537 The mobilization of blood monocytes and their differentiation into macrophages during the immune-inflammatory response helps to prepare the tissue for resolution. During the resolution phase of inflammation macrophages do not die locally: some cells emigrate by draining lymphatics whereas some remain at the site of inflammation. The major myelo-monocytic integrin αMβ2 (Mac-1, CD11b/CD18), together with two related integrins αDβ2 (CD11d/CD18) and αXβ2 (CD11c/CD18), mediate critical adhesive reactions of monocyte/macrophages. However, the roles of these adhesion receptors in control of macrophage retention at sites of inflammation and their emigration to lymph nodes are unclear. Using a mouse model of sterile peritonitis induced by thioglycollate injection, we examined the dynamics of macrophage β2 integrins during the resolution phase of inflammation. Macrophages were defined by FACS analyses as a population of cells expressing αMβ2high, αDβ2+ and CD115+. The initial population of resident β2, positive for βDβ2 and negative for αXβ2. The thioglycollate-challenged mice showed a ∼4-fold increase in macrophages on day 3 followed by a progressive decrease to normal resident cell numbers by day 13. Expression of αMβ2 on macrophages on day 3 decreased by 2.5-fold as a result of dilution of the initial population of αMβ2high resident macrophages by infiltrating blood monocytes expressing αMβ2low. However, after day 3, the density of αMβ2 on macrophages gradually increased and by day 13 returned to the high levels characteristic of resident macrophages. By contrast, expression of αDβ2 and αXβ2 on inflammatory macrophages increased by 2-fold by day 6-9 compared to that on resident macrophages and then returned to the resident levels by day 3. Thus, although the number of macrophages decreased from day 3 to day 9 by several fold, the population of macrophages which remained in the peritoneum was enriched in cells expressing the high levels of αMβ2 and αDα2. Tracking migration of fluorescently labeled peritoneal cells demonstrated that a population of macrophages which leaves the inflamed peritoneum and enters lymph nodes consists of cells expressing low levels of αMβ2 and αDβ2. These data suggested that upregulation of β2 integrins, especially αMβ2, may be responsible for the retention of macrophages in the peritoneum. Indeed, the rate of macrophage emigration from the peritoneum in the αMβ2-deficient mice was significantly higher than that in wild-type mice. The results indicate that macrophage emigration from the inflamed site is controlled by the level of integrin αMβ2 and αDβ2 with low expressors being migratory and high expressors remaining in the peritoneum. The data also highlight the importance of integrins αDβ2 and αXβ2 as specific markers of inflammatory macrophages. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4614-4614
Author(s):  
Ekaterina Mikhaltsova ◽  
Valeri G. Savchenko ◽  
Larisa A. Kuzmina ◽  
Mikhail Drokov ◽  
Vera Vasilyeva ◽  
...  

Abstract Introduction It's generally considered that all alloimmune process such as acute graft-versus host disease (aGVHD) after allo-HSCT are mostly controlled by lymphocytes. The role of neutrophils in systemic alloimmunity after allo-HSCT is still illusive. In 1987 a distinct subset of proinflammatory, low-density granulocytes (LDGs) isolated from the peripheral blood mononuclear cell fractions of patients with system lupus erythematosus has been described. There is no LDG's in healthy donors. While the origin and role of LDGs still needs to be fully characterized, we try to describe this population in patients with hematological malignancies after allo-HSCT Patients and methods. Peripheral blood samples were collected in EDTA-tubes before allo-HSCT, on day +30,+60,+90 after allo-HSCT and at day of aGVHD from 47 patients with hematological malignancies (AML=22, ALL n=17, LPD=3, MDS =2; CML=2; 17 with active disease, 30 - in CR) after allo-HSCT (from matched unrelated donor n=34, from matched related donor n=13; MAC = 13, RIC=34). Isolation of mononuclear cells from human peripheral blood was made by standard protocol using Lympholyte®-M Cell Separation Media (Cedarlane Labs). The anti-CD66b-PE (Biolegend, USA) antibodies and FSC/SSC were used to determine LDGs cells as FSChigh \SSChigh \CD66b+. 100000 of cells were analyzed on a BD FACSCanto II (Becton Dickinson, USA). Results. Results of blood evaluation of 47 patients with hematological malignancies, whose blood was examined after allo-HSCT presented in table 1. Conclusion Despite the fact that we don't get significant differences. LDG's detection in allo-HSCT patients need further investigation. Table 1. Incidence of LDG after allo-HSCT in patients with and without aGVHD Table 1. Incidence of LDG after allo-HSCT in patients with and without aGVHD Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5622-5630 ◽  
Author(s):  
Shahrzad Lighvani ◽  
Nagyung Baik ◽  
Jenna E. Diggs ◽  
Sophia Khaldoyanidi ◽  
Robert J. Parmer ◽  
...  

Abstract Localization of plasmin on macrophages and activation of pro–MMP-9 play key roles in macrophage recruitment in the inflammatory response. These functions are promoted by plasminogen receptors exposing C-terminal basic residues on the macrophage surface. Recently, we identified a novel transmembrane plasminogen receptor, Plg-RKT, which exposes a C-terminal lysine on the cell surface. In the present study, we investigated the role of Plg-RKT in macrophage invasion, chemotactic migration, and recruitment. Plg-RKT was prominently expressed in membranes of human peripheral blood monocytes and monocytoid cells. Plasminogen activation by urokinase-type plasminogen activator (uPA) was markedly inhibited (by 39%) by treatment with anti–Plg-RKT mAb. Treatment of monocytes with anti–Plg-RKT mAb substantially inhibited invasion through the representative matrix, Matrigel, in response to MCP-1 (by 54% compared with isotype control). Furthermore, chemotactic migration was also inhibited by treatment with anti–Plg-RKT mAb (by 64%). In a mouse model of thioglycollate-induced peritonitis, anti–Plg-RKT mAb markedly inhibited macrophage recruitment (by 58%), concomitant with a reduction in pro–MMP-9 activation in the inflamed peritoneum. Treatment with anti–Plg-RKT mAb did not further reduce the low level of macrophage recruitment in plasminogen-null mice. We conclude that Plg-RKT plays a key role in the plasminogen-dependent regulation of macrophage invasion, chemotactic migration, and recruitment in the inflammatory response.


2011 ◽  
Vol 10 (3) ◽  
pp. 54-61
Author(s):  
S. V. Ryzhov ◽  
K. S. Yuryeva ◽  
K. V. Goremykin ◽  
Ye. V. Korotkaya ◽  
I. V. Saltykova ◽  
...  

The flow cytometry analysis of human peripheral blood monocytes separated by a two step density gradient centrifugation is reported. The expression of mRNA level of adenosine receptor (AdoR) subtypes (A1, A2A, A2B and A3) and interleukin 6 (IL-6), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF) in monocytes were determined using real-time PCR. We found considerable variation across individuals in mRNA expression levels of paracrine factors after the stimulation of adenosine receptors. Our findings suggests the role of adenosinergic system accounted for interindividual differences in monocyte activation.


1987 ◽  
Vol 165 (2) ◽  
pp. 320-339 ◽  
Author(s):  
A Wohlwend ◽  
D Belin ◽  
J D Vassalli

Human monocytes/macrophages produce plasminogen activator-specific inhibitors (PAIs) that form covalent complexes with urokinase-type plasminogen activator (uPA). We have characterized two functionally and antigenically related forms of PAIs produced by resting and phorbol myristate acetate (PMA)-treated U 937 cells: an Mr 40,000 form, presumably nonglycosylated, with a pI of 5.2, that is constitutively synthetized by these cells and that remains predominantly intracellular; a PMA-induced form of heterogeneous Mr (50,000-65,000) with a pI of 4.7, that is preferentially secreted; this PAI is glycosylated with terminal sialic acid residue(s). Biosynthetic labeling experiments demonstrated that both PAIs are synthetized by U 937 cells. They are inactivated upon treatment with propanol, heat, and acid; the covalent and equimolar complexes formed between these PAIs and 125I-uPA are dissociated by ammonium hydroxide, suggesting that the PAIs are linked to uPA via an ester bond. Human peripheral blood monocytes/macrophages also produce the two forms of PAI. These PAIs are clearly different from the main plasma protease inhibitors and they are both antigenically related to the PAI-2 characterized in human placenta.


1985 ◽  
Vol 162 (1) ◽  
pp. 157-170 ◽  
Author(s):  
B Hosein ◽  
C Bianco

We describe a molecule on the surface of human peripheral blood monocytes that appears to be a plasma membrane receptor for fibronectin. We have identified this protein using a monoclonal antibody, A6F10, which prevents the interaction between monocytes and substrate-bound fibronectin. Thus, at least functionally, the antibody appears to recognize the plasma membrane receptor for fibronectin. The antibody and its Fab fragments bound to the cell surfaces of human monocytes, tissue macrophages, and, to a lesser extent, neutrophils. It did not react with fibroblasts, lymphocytes, platelets, or erythrocytes. It bound human and guinea pig cells but did not react with rat, mouse, or hamster cells. In Western blots, this monoclonal antibody bound specifically to a polypeptide with apparent molecular weight of 110,000 and made of a single chain. The antigen recognized by A6F10 was susceptible to trypsin digestion. These observations suggest that the monoclonal antibody A6F10 is directed to the fibronectin receptor of human monocytes.


Sign in / Sign up

Export Citation Format

Share Document