scholarly journals Mir-590-5p, Mir-219-5p, Mir-15b and Mir-628-5p Are Commonly Regulated by IL-3, GM-CSF and G-CSF in Acute Myeloid Leukemia,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3520-3520
Author(s):  
Amanda Favreau ◽  
Erin Cross ◽  
Pradeep Sathyanarayana

Abstract Abstract 3520 IL-3, GM-CSF and G-CSF are predominant regulators for growth and differentiation of myeloid progenitors. Interestingly, they all signal via a common JAK2-STAT5 pathway in myeloid progenitor compartments. However, the specific mechanism through which JAK2-STAT5 responds differentially to early-acting and lineage restricted cytokines, particularly in leukemic and stem/progenitor cells, is largely unresolved. Aberrations in IL-3, GM-CSF and G-CSF induced signaling are frequently reported in acute myeloid leukemia (AML). microRNA (miRNA) play several crucial roles during hematopoiesis that include lineage decisions, stem cell progenitor transitions, niche control and other cell functions. Recent investigations have linked aberrant miRNA expression with AML. We hypothesized that a unique response of leukemic myeloid progenitors to IL-3, GM-CSF, and G-CSF are possibly mediated in part by distinct regulation at the miRNA level. Therefore, herein, by utilizing a unique leukemic myeloid cell line, AML-193, that responds to both early and late acting cytokines, we profiled IL-3, GM-CSF and G-CSF regulated miRNA signatures in leukemic myeloid progenitors. For miRNA profiling, AML-193 cells were initially exposed to IL-3 for 3 days followed by GM-CSF for 3 more days and subsequently to G-CSF for 3 days. We then profiled miRNA expression induced by IL-3, GM-CSF and G-CSF in AML-193 cells by treating the respective cohorts post growth factor deprivation with corresponding cytokines. Using SA Bioscience's complete Human V2.0 miRNA Genome Array platform for real-time qPCR-based miRNA expression profiling, we investigated miRNA signatures regulated by IL-3, GM-CSF and G-CSF for n=704 miRNAs in AML-193 cells. Frequencies of false positives were avoided using stringent filters. IL-3 specifically regulated 54 miRNAs and those miRNAs that were highly regulated included miR-362-3p, miR-590-3p, miR-340, miR-24-2, miR-1183 and miR-99a. GM-CSF specifically regulated miRNAs included let-7f, let-7a*, miR-195, miR-122, miR-376-c and miR-33a. G-CSF specifically regulated set included miR-21*, miR-192*, miR-32*, miR-7-1*, miR-545* and miR-37-4a*. Interestingly, 301 miRNAs were commonly regulated by IL-3, GM-CSF and G-CSF. Among the commonly regulated miRNAs, the ones that were subjected to high levels of regulation included miR-590-5p, miR-219-5p, miR-92-a1*, miR-378*, miR-548-3p, miR-29a*, miR-590-3p, miR-203, miR-363, miR-454, miR-340, miR-196a, miR-152, miR-10b, miR-24-2*, miR-10a, miR-182, miR-27a*, and miR-199a-3p. Interestingly, the commonly regulated miRNAs demonstrated a directional regulation in the order of IL-3>GM-CF>G-CSF. Analysis of the potential targets of significantly regulated miRNAs revealed important functional roles in myeloid cell development and differentiation. Conserved targets of miR-590-5p included BMPR2, PCBP2 and KLF3. Targets for miR-219-5p included Smad4 and GADD45b. Targets for miR-362-3p included Sox17, an inhibitor of the Wnt signaling pathway. Furthermore, to identify the JAK2-STAT5 responsiveness of miR-219-5p, miR-362-3p, and miR-590-5p, a STAT5 specific inhibitor (N′-((4-Oxo-4H-chromen-3-yl)methylene)nicotinohydrazide) was used prior to cytokine treatment. Interestingly, IL-3 and GM-CSF mediated induction of miR-590-5p, miR-219-5p and miR-362-3p were not significantly affected by STAT5 inhibitor. However, the G-CSF induction of miR-219-5p and miR-590-5p were significantly inhibited by the STAT5 specific inhibitor. In summary, we have discovered for the first time novel miRNA profiles regulated by IL-3, GM-CSF and G-CSF in an acute myeloid leukemia progenitor cell model. Importantly, we have established a cytokine regulated miRNome for leukemic myeloid progenitors and set the stage for future investigations in leukemic stem cells to delineate the pathological roles of dysregulated miRNAs in AML. In addition, our study displayed that G-CSF induced a subset of miRNAs that are principally regulated via the STAT5 circuit in AML. Further, these novel miRNA signatures may have therapeutic implications for targeting dysregulated miRNAs by antagomir strategy or miRNA replacement therapy, paving the way for the development of novel miRNA-based therapeutic interventions in AML. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Adriana E. Tron ◽  
Matthew A. Belmonte ◽  
Ammar Adam ◽  
Brian M. Aquila ◽  
Lawrence H. Boise ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1319-1326 ◽  
Author(s):  
MR Baer ◽  
P Augustinos ◽  
AJ Kinniburgh

Dysregulated expression of the c-myc and c-myb protooncogenes has been implicated in the pathogenesis of acute myeloid leukemia (AML). To elucidate mechanisms of c-myc dysregulation in AML cells, we studied c- myc RNA turnover in peripheral blood blasts from eight patients using actinomycin D transcription blockade. Rapid c-myc RNA turnover was seen in cells from six patients, with half-lives of approximately 30 minutes, similar to those reported in normal myeloid cells, in HL-60 cells, and in other cell lines. c-myc RNA turnover was prolonged in cells of the other two patients, with half-lives of greater than 75 minutes. c-fos RNA turnover was rapid in blasts from all eight patients, with half-lives of approximately 15 minutes. Stabilization of GM-CSF transcripts was not observed. In contrast, c-myb RNA half-lives were greater than 75 minutes in cells of the two patients with prolonged c-myc RNA turnover, as compared to 30 minutes in cells of the other six patients. Enhanced stability of both c-myc and c-myb RNA species suggests that a defect exists in a trans-acting factor that destabilizes both of these normally labile RNAs. Incomplete correlation between c-myc RNA levels and half-lives indicates regulation of c-myc expression at the level of transcription or nuclear transport in addition to posttranscriptional regulation.


Author(s):  
Joseph G. Jurcic ◽  
Todd L. Rosenblat

Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 (213Bi)-labeled lintuzumab. In a subsequent study, 213Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of 213Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 (225Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that 225Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose 225Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using 213Bi- and astatine-211 (211At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.


2017 ◽  
Vol 1 (20) ◽  
pp. 1682-1693 ◽  
Author(s):  
Ikuko Nakamae ◽  
Jun-ya Kato ◽  
Takashi Yokoyama ◽  
Hidenori Ito ◽  
Noriko Yoneda-Kato

Abstract C/EBPα is a key transcription factor regulating myeloid differentiation and leukemogenesis. The Trib1-COP1 complex is an E3 ubiquitin ligase that targets C/EBPα for degradation, and its overexpression specifically induces acute myeloid leukemia (AML). Here we show that myeloid leukemia factor 1 (MLF1) stabilizes C/EBPα protein levels by inhibiting the ligase activity of the Trib1-COP1 complex. MLF1 directly interacts with COP1 in the nucleus and interferes with the formation of the Trib1-COP1 complex, thereby blocking its ability to polyubiquitinate C/EBPα for degradation. MLF1 overexpression suppressed the Trib1-induced growth advantage in a murine bone marrow (BM) culture and Trib1-induced AML development in BM-transplanted mouse models. MLF1 was expressed in hematopoietic stem cells and myeloid progenitors (common myeloid progenitors and granulocyte-macrophage progenitors) in normal hematopoiesis, which is consistent with the distribution of C/EBPα. An MLF1 deficiency conferred a more immature phenotype on Trib1-induced AML development. A higher expression ratio of Trib1 to MLF1 was a key determinant for AML development in mouse models, which was also confirmed in human patient samples with acute leukemia. These results indicate that MLF1 is a positive regulator that is critical for C/EBPα stability in the early phases of hematopoiesis and leukemogenesis.


Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3183-3189 ◽  
Author(s):  
Ramiro Garzon ◽  
Stefano Volinia ◽  
Chang-Gong Liu ◽  
Cecilia Fernandez-Cymering ◽  
Tiziana Palumbo ◽  
...  

Abstract MicroRNAs (miRNAs) are small RNAs of 19 to 25 nucleotides that are negative regulators of gene expression. To determine whether miRNAs are associated with cytogenetic abnormalities and clinical features in acute myeloid leukemia (AML), we evaluated the miRNA expression of CD34+ cells and 122 untreated adult AML cases using a microarray platform. After background subtraction and normalization using a set of housekeeping genes, data were analyzed using Significance Analysis of Microarrays. An independent set of 60 untreated AML patients was used to validate the outcome signatures using real-time polymerase chain reaction. We identified several miRNAs differentially expressed between CD34+ normal cells and the AML samples. miRNA expression was also closely associated with selected cytogenetic and molecular abnormalities, such as t(11q23), isolated trisomy 8, and FLT3-ITD mutations. Furthermore, patients with high expression of miR-191 and miR-199a had significantly worse overall and event-free survival than AML patients with low expression (overall survival: miR-191, P = .03; and miR-199a, P = .001, Cox regression). In conclusion, miRNA expression in AML is closely associated with cytogenetics and FLT3-ITD mutations. A small subset of miRNAs is correlated with survival.


2010 ◽  
Vol 207 (3) ◽  
pp. 475-489 ◽  
Author(s):  
Yoon-Chi Han ◽  
Christopher Y. Park ◽  
Govind Bhagat ◽  
Jinping Zhang ◽  
Yulei Wang ◽  
...  

The function of microRNAs (miRNAs) in hematopoietic stem cells (HSCs), committed progenitors, and leukemia stem cells (LSCs) is poorly understood. We show that miR-29a is highly expressed in HSC and down-regulated in hematopoietic progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors results in acquisition of self-renewal capacity by myeloid progenitors, biased myeloid differentiation, and the development of a myeloproliferative disorder that progresses to acute myeloid leukemia (AML). miR-29a promotes progenitor proliferation by expediting G1 to S/G2 cell cycle transitions. miR-29a is overexpressed in human AML and, like human LSC, miR-29a-expressing myeloid progenitors serially transplant AML. Our data indicate that miR-29a regulates early hematopoiesis and suggest that miR-29a initiates AML by converting myeloid progenitors into self-renewing LSC.


Sign in / Sign up

Export Citation Format

Share Document