Oncogenic Nras Increases Hematopoietic Stem Cell Proliferation and Self-Renewal Through a Bimodal Effect

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 119-119
Author(s):  
Qing Li ◽  
Natacha Bohin ◽  
Tiffany Wen ◽  
Kevin M. Shannon ◽  
Sean J. Morrison

Abstract Abstract 119 Accumulating evidence suggests that most leukemias are initiated by rare leukemic stem cells (LSC) that are transformed from the normal hematopoietic stem cells and progenitors (HSC/P) by genetic lesions that lead to activation of oncogenes and inactivation of tumor suppressor genes. However, the signaling mechanisms by which these genes transform HSC/P into LSC are poorly understood. Activating mutations of NRAS and KRAS are highly prevalent in acute myeloid leukemia (AML), some myeloproliferative neoplasm (MPN) and myelodysplastic syndromes (MDS). In addition other leukemia associated genetic lesions, such as the BCR-ABL fusion, PTPN11 mutations, FLT3 internal tandem duplications, and NF1 inactivation all deregulate Ras signaling. We previously developed a mouse strain that conditionally expresses an oncogenic NrasG12D allele from the endogenous locus. This consistently resulted in an indolent MPD with delayed onset and prolonged survival in Mx1-cre, NrasG12D/+ mice (referred to as NrasG12D). Oncogenic NrasG12D, however, cooperated with the MOL4070LTR retrovirus to induce AMLs that share molecular and morphologic features with human M4/M5 AML. Here we report that NrasG12D directly affects HSC/P functions. While normal HSCs must remain quiescent to maintain the long term self-renewal capacity and mutations that drive HSC into cycle often lead to HSC depletion, NrasG12D increased HSC proliferation but at the same time increased the self-renewal and competitiveness of HSCs. Serial transplantations revealed that NrasG12D HSCs were able to give higher level of reconstitution than wild-type (WT) HSCs and gave rise to long term multi-lineage reconstitution in lethally irradiated mice after up to four rounds of transplantation while WT HSCs failed to reconstitute beyond two rounds. These effects were not associated with the development of leukemia suggesting oncogenic Nras dys-regulates HSC at a pre-leukemic stage and therefore plays an important role in leukemia initiation. Using histone-2B-GFP (H2B-GFP) label-retaining assays, we further detected a “bimodal” effect of NrasG12D on HSCs: NrasG12D induced a subpopulation of rapid “cycling” HSCs that lost GFP labeling and reconstitution activity faster than WT HSC but another HSC subpopulation that remained more “quiescent” than WT HSCs and retained higher reconstitution when transplanted to irradiated mice. The canonical Ras effector, ERK, was not activated in NrasG12D HSC/Ps and inhibition of ERK with a MEK inhibitor, PD325901, did not have any effect on the Nras induced increase of HSC proliferation. Stat5, on the other hand, was significantly activated in NrasG12D HSC/Ps and heterozygous knockout of Stat5ab abolished the increased proliferation in NrasG12D HSCs, suggesting that Stat5 signaling mediates at least part of the Nras induced increase in HSC proliferation. Nras is thus the first signaling pathway that simultaneously increases HSC proliferation, self-renewal and competitiveness without inducing frank leukemogenesis. This is likely through a “bimodal” effect of Nras signaling on HSC cell cycle regulation. Our studies also identified Stat5 as a novel therapeutic target to inhibit early events in Ras mediated leukemic transformation. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3704-3704
Author(s):  
Aldona A Karaczyn ◽  
Edward Jachimowicz ◽  
Jaspreet S Kohli ◽  
Pradeep Sathyanarayana

The preservation of hematopoietic stem cell pool in bone marrow (BM) is crucial for sustained hematopoiesis in adults. Studies assessing adult hematopoietic stem cells functionality had been shown that for example loss of quiescence impairs hematopoietic stem cells maintenance. Although, miR-199b is frequently down-regulated in acute myeloid leukemia, its role in hematopoietic stem cells quiescence, self-renewal and differentiation is poorly understood. Our laboratory investigated the role of miR-199b in hematopoietic stem and progenitor cells (HSPCs) fate using miR-199b-5p global deletion mouse model. Characterization of miR-199b expression pattern among normal HSPC populations revealed that miR-199b is enriched in LT-HSCs and reduced upon myeloablative stress, suggesting its role in HSCs maintenance. Indeed, our results reveal that loss of miR-199b-5p results in imbalance between long-term hematopoietic stem cells (LT-HSCs), short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MMPs) pool. We found that during homeostasis, miR-199b-null HSCs have reduced capacity to maintain quiescent state and exhibit cell-cycle deregulation. Cell cycle analyses showed that attenuation of miR-199b controls HSCs pool, causing defects in G1-S transition of cell cycle, without significant changes in apoptosis. This might be due to increased differentiation of LT-HSCs into MPPs. Indeed, cell differentiation assay in vitro showed that FACS-sorted LT-HSCs (LineagenegSca1posc-Kitpos CD48neg CD150pos) lacking miR-199b have increased differentiation potential into MPP in the presence of early cytokines. In addition, differentiation assays in vitro in FACS-sorted LSK population of 52 weeks old miR-199b KO mice revealed that loss of miR-199b promotes accumulation of GMP-like progenitors but decreases lymphoid differentiation, suggesting that miR199b may regulate age-related pathway. We used non-competitive repopulation studies to show that overall BM donor cellularity was markedly elevated in the absence of miR-199b among HSPCs, committed progenitors and mature myeloid but not lymphoid cell compartments. This may suggest that miR-199b-null LT-HSC render enhanced self-renewal capacity upon regeneration demand yet promoting myeloid reconstitution. Moreover, when we challenged the self-renewal potential of miR-199b-null LT-HSC by a secondary BM transplantation of unfractionated BM cells from primary recipients into secondary hosts, changes in PB reconstitution were dramatic. Gating for HSPCs populations in the BM of secondary recipients in 24 weeks after BMT revealed that levels of LT-HSC were similar between recipients reconstituted with wild-type and miR-199b-KO chimeras, whereas miR-199b-null HSCs contributed relatively more into MPPs. Our data identify that attenuation of miR-199b leads to loss of quiescence and premature differentiation of HSCs. These findings indicate that loss of miR-199b promotes signals that govern differentiation of LT-HSC to MPP leading to accumulation of highly proliferative progenitors during long-term reconstitution. Hematopoietic regeneration via repopulation studies also revealed that miR-199b-deficient HSPCs have a lineage skewing potential toward myeloid lineage or clonal myeloid bias, a hallmark of aging HSCs, implicating a regulatory role for miR-199b in hematopoietic aging. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1283-1283
Author(s):  
Aldona A Karaczyn ◽  
Edward Jachimowicz ◽  
Jaspreet S Kohli ◽  
Pradeep Sathyanarayana

Abstract Several recent studies have showed that dysregulation of microRNA (miRNA) expression in hematopoietic stem cells (HSC) can affect self-renewal of HSCs, and indicated a role for miRNAs in development of acute myeloid leukemia (AML). We and others have reported a significant down-regulation of miR-199b in AML patients. Recently we found that miR-199b is enriched in long-term hematopoietic stem cells (LT-HSC), suggesting that miR199-b may regulate HSCs function. Therefore, to understand the physiologic role of miR-199 in hematopoiesis during homeostasis, we evaluated various hematopoietic stem and progenitor cells (HSPC) populations in mice harboring genetic deletion of miR199b-5p using CRISPR/Cas method. We found that ablation of miR199b resulted in markedly increased frequencies of primitive HSC and MPPs, and analyses of distribution pattern in myeloid progenitor populations showed reduced numbers of common myeloid progenitors (CMPs) biased toward granulocyte-monocyte (GMPs) linage with no changes in megakaryocytic-erythroid progenitors (MEPs). The elevated numbers of HSC and MPPs may indicate that increased proportion of HSC population is actively cycling, thus we analyzed LSK populations for expression of proliferation marker Ki67 along with DNA staining. We found that miR-199b deletion reduces proportion of primitive HSC and MPPs in cell-cycle, which may affect HSC cell self-renewal. Futher cell-cycle analyses revealed that miR-199b null HSCs leave G0 faster to accumulate in G1, but rather do not progress into mitosis, which was recovered upon 5-fluorouracil-induced cytokine burst. These results indicate that loss of miR-199b increases cell cycle duration. To verify that the absence of miR-199b influences proliferation of HSCs we pulsed miR-199b KO and WT mice with BrdU for 16 hours. We found the difference in the cell cycle distribution between HSCs and progenitors, namely reduction of BrdU-positive HSC and MPPs and progression of GMP compartment. These results show that miR-199b deletion decreases HSC active cell cycle by prolonging cell cycle transition during steady-state hematopoiesis and promotes proliferation of myeloid cells. Because quiescent cells only become susceptible to 5-FU during hematopoietic stress, driving them into cycle, we injected 5-FU into miR-199 KO and WT mice once per week until hematopoietic failure occurred. We found that miR199-b KO mice died soon after two subsequent injections, most likely due to the faster HSC exhaust as compared to WT mice. These results show that loss of miR199b produces HSC with reduced quiescence and prolonged cell cycle, however upon stress these cells progress into cell cycle, making them more susceptible for 5-FU treatment. These results demonstrate that miR-199b intrinsically regulates active cycling of HSCs. CFU-S assays showed that miR-199b KO donors showed decreased colonies in spleen, suggesting that miR-199b deletion affects short-term repopulation. In long-term repopulation assay, we observed a significant reduction of HSCs compartment, but elevated numbers of MPPs in host mice transplanted with BM from miR-199 KO mice. This data indicates that loss of miR-199b causes defects in HSC self-renewal and alters HSCs reconstitution potential. To identify potential miR-199b targets in HSCs under steady-state hematopoiesis, we performed a gene profiling in SLAM-HSCs. mRNA levels of several putative miR-199b targets were markedly elevated in miR-199b KO HSCs. These genes are known to be involved in cell adhesion, cell cycle, transcription regulation and chromatin remodeling including Klf12, Tox3 and Cdk18. Our findings reveal a novel functional role for miR-199b in governing HSC maintenance. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2337-2337
Author(s):  
Takao Sudo ◽  
Takafumi Yokota ◽  
Tatsuki Sugiyama ◽  
Tatsuro Ishida ◽  
Yusuke Satoh ◽  
...  

Abstract Abstract 2337 Although hematopoietic stem cells (HSC) are characterized with self-renewal and pluri-potential, their cell-cycle status and differentiating behavior do fluctuate according to the physiological requirement. In the homeostatic state of adult bone marrow (BM), HSC are likely to be quiescent so that they can evade exhaustion or mutation. However, when BM is injured by irradiation and/or anti-cancer drugs, HSC need to proliferate to restore normal hematopoiesis. Then, after re-establishment of homeostasis, activated HSC return to be quiescent. Molecular crosstalk between HSC and BM microenvironment is thought to elaborately control the status of HSC, but precise mechanisms remain unknown. If the conversion of HSC between dormancy and self-renewal could be accurately monitored, the method should be useful to understand how the HSC status is regulated. Our previous study demonstrated that endothelial cell-selective adhesion molecule (ESAM) is a useful marker for murine HSC throughout life. In the present study, we examined if the ESAM level reflects the HSC status between dormancy and activation. Firstly we monitored ESAM levels of the Lin− Sca1+ c-kit+ (LSK) HSC-enriched fraction in BM after a single 5-FU injection (150 mg/kg) by flow cytometry. From 2 to 9 days after the 5-FU injection, ESAM levels on the LSK fraction remarkably increased. Indeed, the mean fluorescence intensity of ESAM expression on HSC increased by 9.6-fold in 5 days after 5-FU injection. The increase of ESAM expression was more drastic than that of other endothelial-related markers such as CD34 (1.6-fold). After reaching to the maximum peak around day 5–6, ESAM level gradually decreased and returned to the homeostatic level by 12 days after 5-FU. Interestingly, the ESAM up-regulation on HSC was abrogated when inhibitory drugs for NF-kB and topoisomerase-II were given after 5-FU injection. Furthermore, short-term BrdU exposure proved that the ESAMhi cells after 5-FU treatment are actually active in the cell cycle status. Then, the immuno-histochemical analyses were performed to locate the activated HSC in 5-FU treated BM. Since more than 80% of the Lin− ESAMhi Sca1+ cells were found within 20 μm from vascular endothelium, the activated HSC seemed to be intimate with endothelial cells and/or vascular-related cells. Next, we performed functional assessments of the ESAMlow LSK and ESAMhi LSK fractions sorted from 5-FU-treated BM. In methylcellulose cultures, while both fractions contained a number of hematopoietic progenitors, CFU-Mix, primitive multipotent progenitors, were significantly enriched in the ESAMhi fraction (10±0 vs. 48.5±2.1 per 200 ESAMlow or ESAMhi LSK cells, respectively). In the in vivo long-term reconstitution assays, we transplanted 2,000 CD45.1+ ESAMlow or ESAMhi LSK cells with 2 × 105 CD45.2+ competitor BM cells into lethally irradiated CD45.2+ mice. Sixteen weeks after transplantation, the mice transplanted with ESAMhi LSK cells showed significantly higher chimerisms of CD45.1+ cells than those transplanted with ESAMlow LSK, suggesting that long-term HSC are enriched in the ESAMhi fraction. It is noteworthy that the ESAMhi CD45.1+ LSK fraction re-constituted a CD45.1+ LSK population in the CD45.2+ recipient BM, whose ESAM expression levels lowered to the homeostatic level. The results above suggested that ESAM expression level mirrors the activation status of HSC after BM injury. However, it remains unclear if ESAM plays an important role in the hematopoietic recovery. Although we did not observe significant phenotypes except slight anemia in homeostatic ESAM KO mice, we presumed that substantial BM stress might reveal physiological importance of the ESAM expression. At day 5 after injecting 200mg/kg 5-FU, we found that leukocytes and platelet were remarkably decreased in KO mice. Furthermore, the KO mice showed severe anemia (Hb; WT 10.4±1.1 g/dl vs. KO 6.0±1.7 g/dl at day 10), and two of five mice died at day 12. In addition, we observed LSK Flt3− HSC as well as total mononuclear cells more significantly decreased in the KO mice. In summary, our data have shown that ESAM serves as a strong tool to monitor the conversion between dormancy and proliferation of adult BM HSC. In addition, the data from ESAM KO mice have suggested that ESAM is indispensable for normal hematopoietic recovery after BM injury. Further studies should address physiological meanings of the high ESAM level on active HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3578-3578
Author(s):  
Talia Velasco ◽  
Jörg Cammenga

Abstract Hypoxia-induced signalling is a major regulator in normal and malignant hematopoiesis. The transcription factor HIF-1alpha plays a crucial role in the quiescence and self-renewal of hematopoietic stem cells as well as leukemia-initiating cells (LICs) of acute myeloid leukemia and chronic myeloid leukemia. Better understanding of the requirement of the molecular response to hypoxia in LICs could lead to new therapies targeting this pathway. We have therefore investigated the effect of HIF-1alpha loss on the phenotype and biology of FLT3-ITD induced myeloproliferative neoplasm (MPN). Using a combined transgenic mouse model (Mx1-Cre; Hif-1alphafl/fl; Flt3ITD/+) we showed that deletion of HIF-1alpha leads to a more severe MPN phenotype reflected by higher numbers of white blood cells and myeloid cells in peripheral blood, as well as a more severe splenomegaly. Loss of long-term hematopoietic stem cells (LT-HSCs: Lin- Sca1+ cKit+ CD48- CD150+) and increased number of lineage-restricted progenitors (Lin- Sca1+ cKit+ CD48+ CD150-) were the most pronounced effects on a cellular level upon the loss of HIF-1alpha. The proliferative effect of the HIF-1alpha loss was cell intrinsic and not at the expense of the ability of the LICs to self-renew because the disease was transplantable into secondary recipients recapitulating the same phenotype. Mice transplanted with FLT3-ITD induced MPN lacking HIF-1alpha succumbed to their disease (average survival of 35 weeks after transplant), while animals transplanted with MPN with wild-type HIF-1alpha suffered from MPN but did not die in the observation period of 60 weeks. These findings are in contrary to what has been previously described for the role of HIF-1alpha in leukemia initiating cells and lead us to propose that HIF-1alpha could act as a tumor suppressor gene, inhibiting proliferation in myeloid malignancies. Our results provide evidence that targeting HIF-1alpha can lead to disease progression of MPN while not affecting self-renewal of LICs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 650-650
Author(s):  
Iman Fares ◽  
Jalila Chagaroui ◽  
Yves Gareau ◽  
Stéphane Gingras ◽  
Nadine Mayotte ◽  
...  

Abstract The widespread use of cord blood (CB) unit in transplantation is limited with low number of long-term hematopoietic stem cells (LT-HSCs) and progenitors. Several approaches have been developed to expand HSC ex vivo such as automated and continuous medium delivery (fed-batch), notch delta ligand and SR1 (antagonist of aryl hydrocarbon receptor (AhR)). Concurrent with these studies, we hypothesized that small molecule with potent LT-HSC stimulating activity might be identified and potentiated in fed-batch culture system. Accordingly, we tested a library of more than 5000 small molecules for their in vitro expansion of CD34+CD45RA- cells. Most of the identified hits, except one (UM729) synthesized in our institute, suppress AhR pathway. Structure activity relationship was performed on UM729 to generate a more potent analog named UM171. This optimized molecule was 10-20 times more potent with an effective concentration of 15-20 nM when tested for its ability to expand CD34+CD45RA- cells. When compared to SR1, UM171 delivered in a fed-batch system for 12 and 16 days showed a better expansion of HSC phenotypes and lower apoptotic cell number compared to SR1 or DMSO controls. Also, UM171-expaned cultures showed higher number in multipotent progenitors (CFU-GEMM) and long term initiating cells (LTC-IC) compared to DMSO controls. Further studies showed the UM171 did not affect division rate, and its effect in expanding HSC phenotype was reversible. When combined with SR1, UM171 showed a better suppression of differentiation and led to a higher CFU-GEMM expansion compared to the single treatment of the compounds or DMOS controls. These observations suggest that UM171+SR1 cooperate to enhance ex vivo expansion of progenitor cells and suppress differentiation. To determine the in vivo activity of the expanded CD34+ CB cells, we transplanted fresh (un-manipulated) and 12-day cultured cells in NSG mice and monitored the human hematopoietic reconstitution after 20 and 30 weeks post-transplantation. Frequencies of day0 equivalent LT-HSCs were 13-fold higher in UM171 expanded cultures compared to fresh or fed-batch cultures supplemented with DMSO or SR1. Secondary experiments indicated that UM171 ex vivo treatment did not appear to affect the capability of LT-HSC to expand in primary recipients and hence similarly reconstituted secondary animals for at least 18 more weeks. This suggests that UM171 expands LT-HSC ex vivo without losing their engraftment potential. To further investigate UM171 mechanism of action, RNA- Seq expression profiling was performed. Unlike SR1 or DMSO controls, UM171 treatment was accompanied by a marked suppression of transcripts associated with erythroid and megakaryocytic differentiation and up-regulation of membrane protein transcripts such as EPCR and TEMEM 183a. In summery, UM171 is the first molecule identified so far that enables a robust ex vivo expansion of human CD34+ CB cells that sustain their in vivo activity independent of AhR suppression. Conversely, AhR suppression was limited to expand cells with less durable self-renewal potential. This study could enhance the use of small yet well HLA-matched CB units to become a prioritized source for stem cells transplantation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2019 ◽  
Vol 34 (6) ◽  
pp. 1658-1668
Author(s):  
Aurélie Caye ◽  
Kevin Rouault-Pierre ◽  
Marion Strullu ◽  
Elodie Lainey ◽  
Ander Abarrategi ◽  
...  

AbstractJuvenile myelomonocytic leukemia (JMML) is a rare aggressive myelodysplastic/myeloproliferative neoplasm of early childhood, initiated by RAS-activating mutations. Genomic analyses have recently described JMML mutational landscape; however, the nature of JMML-propagating cells (JMML-PCs) and the clonal architecture of the disease remained until now elusive. Combining genomic (exome, RNA-seq), Colony forming assay and xenograft studies, we detect the presence of JMML-PCs that faithfully reproduce JMML features including the complex/nonlinear organization of dominant/minor clones, both at diagnosis and relapse. Further integrated analysis also reveals that although the mutations are acquired in hematopoietic stem cells, JMML-PCs are not always restricted to this compartment, highlighting the heterogeneity of the disease during the initiation steps. We show that the hematopoietic stem/progenitor cell phenotype is globally maintained in JMML despite overexpression of CD90/THY-1 in a subset of patients. This study shed new lights into the ontogeny of JMML, and the identity of JMML-PCs, and provides robust models to monitor the disease and test novel therapeutic approaches.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


2006 ◽  
Vol 103 (9) ◽  
pp. 3304-3309 ◽  
Author(s):  
C. J. Luckey ◽  
D. Bhattacharya ◽  
A. W. Goldrath ◽  
I. L. Weissman ◽  
C. Benoist ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1799-1799
Author(s):  
Ingmar Bruns ◽  
Sebastian Büst ◽  
Akos G. Czibere ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
...  

Abstract Abstract 1799 Poster Board I-825 Multiple myeloma (MM) patients often present with anemia at the time of initial diagnosis. This has so far only attributed to a physically marrow suppression by the invading malignant plasma cells and the overexpression of Fas-L and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by malignant plasma cells triggering the death of immature erythroblasts. Still the impact of MM on hematopoietic stem cells and their niches is scarcely established. In this study we analyzed highly purified CD34+ hematopoietic stem and progenitor cell subsets from the bone marrow of newly diagnosed MM patients in comparison to normal donors. Quantitative flowcytometric analyses revealed a significant reduction of the megakaryocyte-erythrocyte progenitor (MEP) proportion in MM patients, whereas the percentage of granulocyte-macrophage progenitors (GMP) was significantly increased. Proportions of hematopoietic stem cells (HSC) and myeloid progenitors (CMP) were not significantly altered. We then asked if this is also reflected by clonogenic assays and found a significantly decreased percentage of erythroid precursors (BFU-E and CFU-E). Using Affymetrix HU133 2.0 gene arrays, we compared the gene expression signatures of stem cells and progenitor subsets in MM patients and healthy donors. The most striking findings so far reflect reduced adhesive and migratory potential, impaired self-renewal capacity and disturbed B-cell development in HSC whereas the MEP expression profile reflects decreased in cell cycle activity and enhanced apoptosis. In line we found a decreased expression of the adhesion molecule CD44 and a reduced actin polymerization in MM HSC by immunofluorescence analysis. Accordingly, in vitro adhesion and transwell migration assays showed reduced adhesive and migratory capacities. The impaired self-renewal capacity of MM HSC was functionally corroborated by a significantly decreased long-term culture initiating cell (LTC-IC) frequency in long term culture assays. Cell cycle analyses revealed a significantly larger proportion of MM MEP in G0-phase of the cell cycle. Furthermore, the proportion of apoptotic cells in MM MEP determined by the content of cleaved caspase 3 was increased as compared to MEP from healthy donors. Taken together, our findings indicate an impact of MM on the molecular phenotype and functional properties of stem and progenitor cells. Anemia in MM seems at least partially to originate already at the stem and progenitor level. Disclosures Off Label Use: AML with multikinase inhibitor sorafenib, which is approved by EMEA + FDA for renal cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document