NR4A1 Mediated Apoptosis of Aggressive Lymphoma Cells Suppresses Tumor Growth in a Xenograft Model.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2408-2408
Author(s):  
Alexander JA Deutsch ◽  
Beate Rinner ◽  
Martin Pichler ◽  
Sonja Reitter ◽  
Christine Beham-Schmid ◽  
...  

Abstract Abstract 2408 NR4A1 (Nur77) and NR4A3 (Nor-1) are two members of the orphan nuclear receptors (NRs). Their function as critical tumour suppressor genes (TSG) is demonstrated by the rapid development of acute myeloid leukemia (AML) of NR4A1 and NR4A3 double knock out mouse and by their reduced expression in leukemic blasts from human AML patients. The aim of our study is to comprehensively study NR4A1 and NR4A3 expression B-cell malignancies and to define and functionally characterize the nuclear orphan receptors NR4A1 as TSGs in B-cell malignancies. We found a more than 50% reduction of both, NR4A1 and NR4A3, in B-CLL (71%) and Follicular Lymphoma (70%), and in diffuse large B cell lymphoma (DLBCL) (74%) compared to normal controls. In DLBCL low NR4A1 expression was significantly associated with non-germinal center B-cell subtype and with poor overall survival (p=0.042, HR=2.2, CI=1.01–4.9). To investigate the function of NR4A1 in lymphomas, we over-expressed NR4A1 in a lymphoma cell line (Sc-1) by using an inducible lentiviral expression system and performed apoptotic assays by determing cleaved caspase 3, the sub-G1 peak and Annexin V positivity. Induction of NR4A1 expression led to apoptosis in a significantly higher proportion of induced Sc-1 cells compared to their uninduced controls in all assays analysed. Additionally, treatment of an immortalized B cell line (UH3) and three lymphoma cell lines (Karpas422, SC-1 and Ly8) with Cytosporone B (Csn-B), a NR4A1 ligand known to induce NR4A1, caused NR4A1 mediated apoptosis. To test the tumor suppressor function of NR4A1 in vivo, the stably transduced Sc-1 lymphoma cell lines were further investigated in a NOD/SCID/IL-2rγnull (NSG) mouse model. Induction of NR4A1 in Sc-1 suppressed tumor growth in the NSG mice, in contrast to vector controls and uninduced Sc-1 cells, where massive tumor formation was observed. Our data suggest that NR4A1 has pro-apoptotic functions in vitro and that Csn-B induces a NR4A1 mediated apoptosis in lymphoma cells. Our xengraft experiments define NR4A1 as novel tumor suppressor in vivo. Hence, regulation of NR4A1 is a promising new therapeutical target for future anti-lymphomatherapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2674-2674 ◽  
Author(s):  
Alexander JA Deutsch ◽  
Beate Rinner ◽  
Kerstin Wenzl ◽  
Katharina Troppan ◽  
Beata Pursche ◽  
...  

Abstract Recently, we described a significant down-regulation of NR4A1 (Nur77) and NR4A3 (Nor-1)-two members of the orphan nuclear receptors acting together as critical tumor suppressor genes in acute myeloid leukemia- in aggressive lymphoma1. NR4A1 over-expression proved its pro-apoptotic function in aggressive lymphoma cells and its lymphoma suppressive properties in vivo was demonstrated in a xenograft mouse model. Since the role of NR4A3 in aggressive lymphomas and the effects of NR4A3 inducing agents on lymphoma cells are unknown, we aimed to investigate NR4A3 function and the effects of a NR4A3 inducing agent in aggressive lymphoma cells. For functional characterization, NR4A3 was over-expressed in a SuDHL4 lymphoma cell line by using an inducible lentiviral construct followed by various apoptotic assays. Induction of NR4A3 expression led to a significantly higher proportion of induced SuDHL4 cells undergoing apoptosis as demonstrated by DNA cleavage, Annexin V staining and increased caspase 3-7 activity suggesting a functional redundancy to NR4A1 in aggressive lymphoma. To test the tumor suppressor function of NR4A3 in vivo, the stably transduced SuDHL4 lymphoma cell line was further investigated in the NOD scid gamma (NSG) mouse model. Induction of NR4A3 in SuDHL4 abrogated tumor growth in the NSG mice, in contrast to vector control- and uninduced SuDHL4 cells, which formed massive lymphoid tumors. Additionally, four aggressive lymphoma cell lines (Karpas-422 and SuDHL4 as GCB- cell line, RI-1 and U2932 as ABC-cell lines) were treated with a NR4A3 inducing agent, named Thapsigargin followed by cell growth (MTS) and apoptotic (Annexin V staining and Caspase 3-7 activity assay) assays. Treatment with Thapsigargin induced NR4A3 expression accompanied with induction of apoptosis of all four lymphoma cell lines detected by increased percentage of Annexin V positive cell and increased caspase 3/7 activity. Inhibition of NR4A3 by siRNA reduced the apoptotic effects of Thapsigargin. To further compare the transcriptional activity as nuclear receptor of NR4A3 to NR4A1, both receptors were separately over-expressed in our four aggressive lymphoma cell lines followed by mRNA expression analysis of intrinsic (Bad, BIK, BID, BMF, Noxa, BAK, Bax, Puma, Bim, Bcl-2, Bcl-X and Mcl-1) and extrinsic (FasL, Fas, Trail, DR4 and DR5) apoptotic genes. mRNA expression analysis of apoptotic genes in aggressive lymphoma cells demonstrated that NR4A1 and NR4A3 over-expression induced Trail, Bim, Puma, BIK, BID and BAK in a similar pattern. Our data suggest that NR4A3 has a pro-apoptotic function in aggressive lymphoma and define that NR4A3 together with the functionally redundant NR4A1 as novel tumor suppressor involved in aggressive lymphoma development. Hence, NR4A3 and its inducing agents are promising novel targets for drug development in lymphoma therapy. 1. Deutsch AJ, Rinner B, Wenzl K, et al. NR4A1-mediated apoptosis suppresses lymphomagenesis and is associated with a favorable cancer specific survival in patients with aggressive B-cell lymphomas. Blood. 2014. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 498-498
Author(s):  
Anupama Gopisetty ◽  
Myriam Foglietta ◽  
Min Zhang ◽  
Zhiqiang Wang ◽  
Nathan Fowler ◽  
...  

Abstract The results of gene expression profiling (GEP) and immunohistochemical studies indicate that survival is worsened by macrophages (MΦ) in the tumor microenvironment of various B-cell lymphomas including follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Tumor-associated macrophages (TAMs) are known to be different from other types of MΦ, but the effects of TAMs that worsen prognosis in B-cell lymphoma are essentially unknown, as are the mechanisms of these effects. Here, we determined the phenotype and effects of TAMs on tumor survival, proliferation, and drug resistance in B-cell lymphomas and evaluated strategies to reverse their effects. As compared to peripheral blood monocytes (Mo) from normal donors (ND), Mo from FL patients were differentiated less into M1 MΦ (defined as CD68+CD163loCD206loCD86hi) by culture with CSF-1 for 5 days followed by IFN-g + LPS for 2 days more. In contrast, Mo from FL patients and ND were differentiated similarly into M2 MΦ (defined as CD68+CD163hiCD206hiCD86lo) by culture with CSF-1 followed by IL-4. Consistent with this, MΦ gene signatures from FL tumors were more similar to previously-described signatures of M2 rather than M1 MΦ (Martinez et al, J Immunol, 2006, 177(10):7303-11). In co-culture, primary FL tumor cells and lymphoma cell lines (including RL, a transformed FL cell line; Granta 519, a mantle cell lymphoma (MCL) cell line; and Raji, a Burkitt lymphoma cell line) induced differentiation of Mo into MΦ. Differentiation could be prevented by CS4 monoclonal antibody (mAb), a fully human IgG1 anti-human CSF-1R mAb (ImClone/Eli Lilly), but not isotype control Ab. Elevated levels of CSF-1 in culture supernatants after addition of CS4 mAb and real-time PCR of tumor cells suggested secretion of CSF-1 by lymphoma cells. Spontaneous apoptosis of primary FL and MCL tumor cells, determined by Annexin V and propidium iodide staining, was significantly reduced by co-culture with ND Mo (p<0.01), whether pre-differentiated into MΦ with CSF-1 or not, but this protection could be reversed by CS4 mAb. Mo and/or pre-differentiated MΦ protected primary FL and MCL tumor cells from cytotoxic effects of doxorubicin and/or bendamustine (p<0.01), but CS4 mAb reversed this effect. To assess effects of MΦ on proliferation, lymphoma cell lines (RL, Granta 519, and Raji) were CFSE-labeled prior to co-culture with Mo and doxorubicin, and proliferation assessed by CFSE dilution by flow cytometry in the presence or absence of CS4 or isotype control mAbs. MΦ promoted proliferation of all three cell lines, but this effect could be reversed by CS4 mAb. To further understand the mechanism by which MΦ promote tumor survival and growth, we performed phosflow analysis and found increased phosphorylation of STAT3 in co-cultured lymphoma cells. Consistent with this, we observed a correlation between an 11-gene STAT3 activation signature, described by Huang et al in DLBCL tumors (J Clin Oncol, 2013, 52.8414), and a MΦ gene signature in whole genome GEP studies of 191 FL tumors (Pearson correlation co-efficient=0.396, p<0.001). In conclusion, our results suggest that Mo from FL patients are predisposed to differentiate into an M2-like MΦ state. The interaction between lymphoma cells and Mo/MΦ is reciprocal: a change in Mo (MΦ differentiation) induced by interaction with lymphoma tumor cells leads to a change in the tumor cells (promotion of survival, proliferation, and chemoresistance). More importantly, our results demonstrate that targeting TAMs using CS4, an anti-CSF-1R mAb, can be an effective strategy to overcome the adverse effects of TAMs and reverse chemoresistance. Further studies are needed to determine whether STAT3 activation contributes to the protumor effects of TAMs. This may provide novel insights into the molecular mechanisms related to TAMs and lymphoma cells and offers additional targets for therapeutic development. In the long term, strategies targeting TAMs is especially appealing, as they should be able to be combined with existing therapies including chemotherapy, other immunotherapy, and targeted therapy, potentially improving their efficacy without increasing toxicity for FL, DLBCL, and other B-cell malignancies. Disclosures No relevant conflicts of interest to declare.


2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4637-4637
Author(s):  
Gerald G. Wulf ◽  
Anita Boehnke ◽  
Bertram Glass ◽  
Lorenz Truemper

Abstract Anti-CD45 mediated cytoreduction is an effective means for T-cell depletion in rodents and humans. In man, the CD45-specific rat monoclonal antibodies YTH24 and YTH54 are IgG2b subclass, exert a predominantly complement-dependent cytolytic activity against normal T-lymphocytes, and have been safely given to patients as part of conditioning therapies for allogeneic stem cell transplantation. The efficacy of such antibodies against human lymphoma is unknown. Therefore, we evaluated the cytolytic activity of YTH24 and YTH54 by complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), as well as by direct apoptotic and antiproliferative effects, against a panel of Hodgkin disease (HD) and non-Hodgkin lymphoma (NHL) cell lines, and against primary specimens. Significant CDC activity (&gt;50% cytolysis) of the antibodies YTH54 and YTH24 was observed against three of five T-cell lymphoma lines, but against only one of nine B-cell lymphoma lines and none of four HD cell lines. The combination of YTH54 and YTH24 induced ADCC in all T-cell lymphoma cell lines and three primary leukemic T-cell lymphoma specimens, but were ineffective in B-cell lymphoma and HD cell lines.There were only minor effects of either antibody or the combination on lymphoma cell apoptosis or cell cycle arrest. In summary, anti-CD45 mediated CDC and ADCC via the antibodies YTH24 and YTH54 are primarily effective against lymphoma cells with T-cell phenotype, and may be an immunotherapeutic tool for the treatment of human T-cell lymphoma.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that is transcriptionally classified into germinal center B-cell (GCB) and activated B-cell (ABC) subtypes. A subset of both GCB- and ABC-DLBCLs are dependent on B-cell receptor (BCR) signaling. Previously, we defined distinct BCR/PI3K-mediated survival pathways and subtype-specific apoptotic mechanisms in BCR-dependent DLBCLs (Cancer Cell 2013 23:826). In BCR-dependent DLBCLs with low baseline NF-κB activity (GCB tumors), targeted inhibition or genetic depletion of BCR/PI3K pathway components induced expression of the pro-apoptotic HRK protein. In BCR-dependent DLBCLs with high NF-κB activity (ABC tumors), BCR/PI3K inhibition decreased expression of the anti-apoptotic NF-κB target gene, BFL1. Our recent analyses revealed genetic bases for perturbed BCR/PI3K signaling and defined poor prognosis DLBCL subsets with discrete BCR/PI3K/TLR pathway alterations (Nat Med 2018 24:679). Cluster 3 DLBCLs (largely GCB tumors) exhibited frequent PTEN deletions/mutations and GNA13 mutations. Cluster 5 DLBCLs (largely ABC tumors) had frequent MYD88L265P and CD79B mutations that often occurred together. These DLBCL subtypes also had different genetic mechanisms for deregulated BCL2 expression - BCL2 translocations in Cluster 3 and focal (18q21.33) or arm level (18q) BCL2 copy number gains in Cluster 5. These observations prompted us to explore the activity of PI3K inhibitors and BCL2 blockade in genetically defined DLBCLs. We utilized a panel of 10 well characterized DLBCL cell line models, a subset of which exhibited hallmark genetic features of Cluster 3 and Cluster 5. We first evaluated the cytotoxic activity of isoform-specific, dual PI3Kα/δ and pan-PI3K inhibitors. In in vitro assays, the PI3Kα/δ inhibitor, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. We next assessed the transcriptional abundance of BCL2 family genes in the DLBCLs following copanlisib treatment. In BCR-dependent GCB-DLBCLs, there was highly significant induction of the pro-apoptotic HRK. In BCR-dependent ABC-DLBCLs, we observed significant down-regulation of the anti-apoptotic BFL1 protein and another NF-κB target gene, BCLxL (the anti-apoptotic partner of HRK). We then used BH3 profiling, to identify dependencies on certain BCL2 family members and to correlate these data with sensitivity to copanlisib. BCLxL dependency significantly correlated with sensitivity to copanlisib. Importantly, the BCLxL dependency was highest in DLBCL cell lines that exhibited either transcriptional up-regulation of HRK or down-regulation of BCLxL following copanlisib treatment. In all our DLBCL cell lines, PI3Kα/δ inhibition did not alter BCL2 expression. Given the genetic bases for BCL-2 deregulation in a subset of these DLBCLs, we next assessed the activity of the single-agent BCL2 inhibitor, venetoclax, in in vitro cytotoxicity assays. A subset of DLBCL cell lines was partially or completely resistant to venetoclax despite having genetic alterations of BCL2. We postulated that BCR-dependent DLBCLs with structural alterations of BCL2 might exhibit increased sensitivity to combined inhibition of PI3Kα/δ and BCL2 and assessed the cytotoxic activity of copanlisib (0-250 nM) and venetoclax (0-250 nM) in the DLBCL cell line panel. The copanlisib/venetoclax combination was highly synergistic (Chou-Talalay CI<1) in BCR-dependent DLBCL cell lines with genetic bases of BCL2 deregulation. We next assessed copanlisib and venetoclax activity in an in vivo xenograft model using a DLBCL cell line with PTENdel and BCL2 translocation (LY1). In this model, single-agent copanlisib did not delay tumor growth or improve survival. Single-agent venetoclax delayed tumor growth and improved median survival (27 vs 51 days, p<0.0001). Most notably, we found that the combination of copanlisib and venetoclax delayed tumor growth significantly longer than single-agent venetoclax (p<0.0001). Additionally, the combined therapy significantly increased survival in comparison with venetoclax alone (median survival 51 days vs not reached, p<0.0013). Taken together, these results provide in vitro and in vivo pre-clinical evidence for the rational combination of PI3Kα/δ and BCL2 blockade and set the stage for clinical evaluation of copanlisib/venetoclax therapy in patients with genetically defined relapsed/refractory DLBCL. Disclosures Letai: AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership; AstraZeneca: Consultancy, Other: Lab research report. Shipp:AstraZeneca: Honoraria; Merck: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to &gt;10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated &gt; 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting &gt; 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2924-2924
Author(s):  
Xiangxiang Zhou ◽  
Ying Li ◽  
Xinyu Li ◽  
Lingyun Geng ◽  
Ya Zhang ◽  
...  

Abstract Introduction: Klotho is an anti-aging gene with an extracellular domain. Mice with Klotho knockout exhibited obvious impairment in B-cell development. Evolving evidence indicates that Klotho modulates the proliferation and survival via targeting insulin-like growth factor-1 receptor (IGF-1R) in several cancers. However, the expression and biological role of Klotho in B-cell non-Hodgkin lymphoma (B-NHL) has not been elucidated to date. We hypothesized that Klotho could modulate the tumor growth and predicts prognosis in diffuse large B-cell lymphoma (DLBCL) through inhibiting IGF-1R activation. The aim of this study is to characterize the functional significance of Klotho and the therapeutic potential of its secreted form in DLBCL. Methods: Lymph nodes samples from 50 de novo DLBCL and 20 reactive hyperplasia cases were collected with informed consents. Klotho expression were assessed by Immunohistochemistry. CD19+ B-cells and peripheral blood mononuclear cells were isolated with informed consents from healthy donors. Expression levels of Klotho mRNA and protein in DLBCL cells were determined by quantitative RT-PCR and western blotting. Lentivirus vectors either encoding Klotho (LV-KL) or empty lentiviral vector (LV-Con) were stably transfected into DLBCL cells. Cell viability and apoptosis were analyzed by cell counting kit-8 and Annexin V-PE/7AAD staining. Animal experiments were performed in accordance with the principles of the Institutional Animal Care. SCID-Beige mice were subcutaneously injected with DLBCL cells to establish xenograft model. Results: We observed markedly decreased level of Klotho protein in DLBCL lymph nodes (Fig. 1A). Expression of Klotho protein exhibited significantly negative correlation with Ann Arbor stage of DLBCL patients (p=0.002). Level of Klotho protein was negatively correlates with the media overall survival (OS), suggesting lower Klotho expression is associated with poor OS in DLBCL ((Fig. 1B, p=0.045). Reduction of Klotho was also confirmed in DLBCL cell lines at mRNA and protein level (Fig. 1C). We next functionally interrogated the role of Klotho in DLBCL cell lines and xenograft models. Stably expression of LV-KL in DLBCL cell lines resulted in dramatically decreased cell proliferation and incremental apoptotic rates when compared to LV-Con (Fig. 2A and B). We validated the changed expression of critical targets known to govern apoptosis in DLBCL cells transfected with LV-KL. Xenograft models with Klotho overexpression revealed significantly abrogated tumor growth compared to control group (Fig. 2C). Interestingly, lower levels of Ki67 were observed in mice treated with LV-KL (Fig. 2D). These results highlighted the proliferation-inhibitory and apoptosis-inductive activities of Klotho in DLBCL cells. The underlying mechanism driving the tumor suppressive potential of Klotho was investigated. Surprisingly, we observed that the Klotho-induced inhibition of cell viability was only fewer restored by IGF-1 in DLBCL cells transfected with LV-KL (Fig. 3A). Reductive phosphorylation of IGF-1R and its downstream targets (AKT and ERK1/2) were observed in DLBCL cells with Klotho overexpression (Fig. 3B). In addition, we evaluated the regulation of Klotho on IGF-1R signaling in vivo. Decreased phosphrolation of IGF-1R as well as its downstream targets were observed in mice treated with LV-KL compared to the control group (Fig. 3C). Lastly, we explored the activity of secreted Klotho protein (rhKL). The rhKL was found to be active in vitro and significantly reduced the viabilities of DLBCL cells (Fig. 3D). Moreover, combination with rhKL increased the sensitivity of DLBCL cells to adriamycin. The in vivo activity of rhKL in DLBCL xenograft model was also detected. Significantly decreased tumor volumes were noted in mice treated with rhKL compared with those treated with vehicle control (Fig. 3E). Moreover, reductive expression level of Ki67 was observed in rhKL-treated group (Fig. 3F). Conclusions: Our observations identified for the first time that loss of Klotho expression contributed to the development and poor prognosis via activating IGF-1R in DLBCL. Given the in vivo tumor suppressive activity of secreted Klotho protein, it may serve as a potential strategy for the development of novel therapeutic interventions for DLBCL. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 711-711
Author(s):  
Anagh Anant Sahasrabuddhe ◽  
Xiaofei Chen ◽  
Kaiyu Ma ◽  
Rui Wu ◽  
Richa Kapoor ◽  
...  

Abstract Introduction: Diffuse large B cell lymphoma (DLBCL) is the most common form of malignant lymphoma and may arise de novo, or through transformation from a pre-existing low-grade B cell lymphoma such as follicular lymphoma (FL). However, the post-translational mechanisms and deregulated pathways underlying the pathogenesis of disease evolution are not fully understood. Methods: We employed integrated functional and structural genomics and mass spectrometry (MS)-driven proteomics which implicated a possible novel tumor suppressor role for a conserved E3 ubiquitin ligase FBXO45 in DLBCL pathogenesis. We generated conditional knockout mice targeting loss of Fbxo45 in germinal center (GC) B-cells using the Cg1-Cre-loxP system and an assortment of CRISPR-mediated knockouts of FBXO45 in B cell lymphoma cells (FL518, BJAB, U2932). We engineered B cell lines (BJAB, U2932) to inducibly express FLAG-tagged FBXO45 to identify candidate substrates of FBXO45 using liquid chromatography-tandem MS. In vitro biochemical and in vivo studies using a variety of genetically-modified lines in xenograft studies in immunodeficient mice were performed to validate observations from proteogenomic studies. Whole genome sequencing (WGS) and genomic copy number studies were interrogated to investigate structural alterations targeting FBXO45 in primary human lymphoma samples. Results: Conditional targeting of Fbxo45 in GCB-cells in transgenic mice resulted in abnormal germinal center formation with increased number and size of germinal centers. Strikingly, targeted deletion of Fbxo45 in GCB-cells resulted in spontaneous B cell lymphomas with (22/22);100%) penetrance and none of the wild-type (WT) littermates (0/20; 0%) developed lymphoma at 24 months. Macroscopic examination revealed large tumor masses, splenomegaly, and lymphadenopathy at different anatomic locations including ileocecal junction, mesenteric, retroperitoneal and cervical lymph nodes and thymus. Next generation sequencing of immunoglobulin heavy chain genes revealed monoclonal or oligoclonal B cell populations. Using proteomic analysis of affinity-purified FBXO45-immunocomplexes and differential whole proteome analysis from GCB-cells of Fbxo45 wt/wt vs Fbxo45 fl/fl mice, we discovered that FBXO45 targets the RHO guanine exchange factor GEF-H1 for ubiquitin-mediated proteasomal degradation. FBXO45 exclusively interacts with GEF H1 among 8 F-box proteins investigated and silencing of FBXO45 using three independent shRNA and CRISPR-Cas9-mediated knockouts in B-cell lymphoma cell lines promotes RHOA and MAPK activation, B cell growth and enhances proliferation. GEF-H1 is stabilized by FBXO45 depletion and GEF-H1 ubiquitination by FBXO45 requires phosphorylation of GEF-H1. Importantly, FBXO45 depletion and expression of a GEF-H1 mutant that is unable to bind FBXO45 results in GEF-H1 stabilization, promotes hyperactivated RHO and MAPK signaling and B-cell oncogenicity in vitro and in vivo. Notably, this phenotype is reverted by co-silencing of GEF-H1. Inducible ectopic expression of FBXO45 triggers accelerated turnover of GEF H1 and decreased RHOA signaling. Genomic analyses revealed recurrent loss targeting FBXO45 in transformed DLBCL (25%), de novo DLBCL (6.6%) and FL (2.3%). In keeping with our observation of prolonged hyperactivation of pERK1/2 consequent to FBXO45 ablation, in vitro and in vivo studies using B-cell lymphoma cell lines and xenografts demonstrated increased sensitivity to pharmacologic blockade with the MAP2K1/2 (ERK1/2) inhibitor Trametinib. Conclusions: Our findings define a novel FBXO45-GEF-H1-MAPK signalling axis, which plays an important role in DLBCL pathogenesis. Our studies carry implications for potential exploitation of this pathway for targeted therapies. Disclosures Siebert: AstraZeneca: Speakers Bureau. Lim: EUSA Pharma: Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2381-2381
Author(s):  
Kanutte Huse ◽  
Marianne B. Eide ◽  
Christian Kersten ◽  
Erlend B. Smeland ◽  
June H. Myklebust

Abstract Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily, and mediate their effects mainly through the Smad signalling pathway. Whereas TGF-β is well established as one of the most potent negative regulators in hematopoietic cells, the role of BMPs remains more elusive. We have previously shown that BMP-6 inhibits the growth of naïve and memory human B cells. As high BMP-6 mRNA expression is associated with poor outcome in diffuse large B cell lymphoma (DLBCL; Rosenwald et al, N Engl J Med 2002), we hypothesized that resistance towards BMP-induced growth inhibition is a possible mechanism for lymphomagenesis. In the current study, 7 B cell lymphoma cell lines (representing Burkitt lymphoma (BL) and DLBCL) and tumour material from lymphoma patients were investigated to unravel the role of BMPs in lymphomas. We analyzed the expression of BMP receptors by FACS analysis, and found variable expression of the BMP receptor type I (Alk2, Alk3 and Alk6) and type II (BMP RII, Activin RIIA and RIIB) among the cell lines and in primary lymphoma cells, suggesting variable binding of BMPs. We next investigated the effect of BMP-2, BMP-4, BMP-6 and BMP-7 on proliferation and survival of B lymphoma cell lines, and found 2 of 7 cell lines to be resistant towards BMP-2 and BMP-4 induced growth inhibition. In contrast, 4 of 7 and 7 of 7 cell lines were resistant to BMP-6 and BMP-7 induced growth inhibition, respectively. In Sudhl6 cells that were highly sensitive to BMP-2 and BMP-6 induced apoptosis and inhibition of proliferation, we demonstrated that the cytokines IL-10, CD40 Ligand and BLyS were able to counteract the negative effects induced by BMPs, while IL-2 and IL-4 were not. On the contrary, both BMP-2 and BMP-6 greatly increased anti-IgM activation induced apoptosis. In resistant lymphoma cells, the BMPs were not able to induce detectable levels or induced low levels of phosphorylated SMAD1/5/8 compared to sensitive cell lines. Low or no increase in phosphorylation of SMAD1/5/8 induced by BMPs could only partly be explained by low/ undetectable expression of BMP receptors. Hence, upregulation of inhibitory Smads (Smad6, Smad7) or mutations in receptors or Smads represent other possible mechanisms for resistance to BMPs in lymphomas, and this is currently under investigation. We also investigated if the lymphoma cells produced BMPs themselves and found that 5 of 7 cell lines and 3 of 5 primary lymphomas produced significant amounts of BMP-7. Some lymphoma cells also had detectable levels of BMP-4 and BMP-6. Our findings that lymphoma cells are resistant towards BMP-7 and to some degree BMP-6 induced growth inhibition, whereas they produce these cytokines, suggest that resistance towards BMP induced signalling in B cell lymphomas can contribute to increased tumour growth.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2940-2940
Author(s):  
Moritz Bewarder ◽  
Lorenz Thurner ◽  
Frank Neumann ◽  
Natalie Fadle ◽  
Evi Regitz ◽  
...  

Abstract Background Chronic antigenic stimulation of the B-cell receptor (BCR) seems to play a critical role in the pathogenesis of B-cell lymphomas. We recently identified ARS2 and LRPAP1 as the autoantigenic targets of the B-cell receptors of approximately 25% of diffuse large B cell lymphomas (DLBCLs) of the ABC type and 45% of mantle cell lymphomas (MCLs), respectively. These BCR antigens can be used to target lymphoma cells in an approach we designated as BAR (B-cell receptor antigens for reverse targeting). The optimal therapeutic format BARs can be integrated in has yet to be found. Since the most established approach to deliver therapeutic payloads to specific targets are antibodies which have well-defined pharmacokinetics, we constructed and tested an antibody like construct (BAR-body) incorporating the DLBCL-BAR ARS2 in substitution for the variable domains of the heavy and light chains. Material and methods To create the ARS2 BAR-body, we exchanged the heavy and light chain variable region sequences of an IgG1 antibody with a sequence of similar length (approximately 120 amino acids) of the ARS2 protein (aa 343 - 466) containing the DLBCL reactive epitope (aa 343 - 375). The construct was assembled in a pCR2.1 vector, then transferred to a pSfi FLAG Tag vector for fusion with the FLAG tag and transfected into HEK293 cells for production. Purification of the BAR-body was performed via anti-FLAG antibody affinity chromatography. The BAR-body was detected by western blot analysis and binding capacity to the ARS2-reactive lymphoma cell lines U2932 and OCI-Ly3 and the not ARS2-reactive control DLBCL cell line TMD8 was assessed by flow cytometry. ARS2 BAR-body induced cytotoxicity of lymphoma cells with an ARS2 reactive BCR was measured by LDH release assays with human PBMCs as effector cells at an E:T ratio of 10:1. Results We cloned, expressed and characterized an ARS2 containing BAR-body incorporating 4 molecules of the lymphoma-reactive epitope of ARS2 resulting in an antibody like construct using a BAR (ARS2) as binding moiety instead of normal variable regions. The ARS2 BAR-body could successfully be cloned and expressed as confirmed by western blot analysis, which showed the construct at approximately 150 kD as was to be expected. The BAR-body bound specifically to the ARS2-reactive lymphoma cell lines U2932 and OCI-Ly3 and did not bind to the DLBCL cell line TMD8, which has a B-cell receptor of different specificity or to lymphoma cell lines of different entities. In LDH release assays with 5 x 104 PBMCs and 5 x 103 lymphoma cells (E:T ratio of 10:1) the ARS2 BAR-body induced PBMC mediated specific lysis of the ARS2 reactive lymphoma cell lines U2932 and OCI-Ly3 but not the control DLBCL cell line TMD8 starting at a concentration of 0,1µg/ml. Cytotoxic effects were dose dependent, reached a maximum of 50% specific lysis at a concentration of 1µg/ml and did not increase at concentrations of 10µg/ml. Conclusion Here, we show that BARs can substitute for the variable domains as binding moiety in antibody like constructs to target the BCR of B-cell lymphomas. Because approaches using their specific cognate antigen for targeting the malignant B cells have an exclusive specificity for the BCR of the malignant clone, they can be expected to be less toxic than the currently available antibody derived therapies targeting B-cells, because they leave normal B-lymphocytes unaffected. By incorporating BARs into the well-known format of an antibody we hope to capitalize on years of experience with this therapeutic format from conducting and interpreting in vivo experiments to the translation of the BAR approach into the clinic. Disclosures Stilgenbauer: Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffmann La-Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmcyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document