Lithium Treatment Potentiates Both in Vitro and in Vivo Retinoic Acid Efficacy in APL.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2614-2614
Author(s):  
Fabien Zassadowski ◽  
Katka Pokorna ◽  
Nicolas Ferre ◽  
Laura Llopis ◽  
Oussama Chourbagi ◽  
...  

Abstract Abstract 2614 We previously demonstrated that although retinoic acid (RA) has targeted efficacy in Acute Promyelocytic Leukemia (APL), heterogeneity exists leading to the appearance of un-targeted clones at the time of relapse. Characterization of these clones is not yet fully unraveled though we and others have previously highlighted the roles of RARα mutations, pharmacogenomics or APL miRNome. We recently identified that the ERK1/2 pathway synergized with RA to restore the transcriptional activity of RA in resistant APL cells, thus restoring RA induced differentiation (Cassinat et al. Mol Cell Biol 2011). These results suggest that targeting interconnected signaling pathways could optimize differentiation therapy efficacy. To this effect, we studied known signaling pathway activators or inhibitors that could potentiate with RA and identified Lithium chloride (LiCl). Treatment of the ATRA sensitive-APL NB4 cell line with LiCl (25mM) decreases proliferation and increases apoptosis (25% and 40% of Annexin V-positive cells at day 1 and 2 respectively) with evidence of caspase 3 cleavage at day 2. Because NB4 cells fully differentiated with RA alone we were unable to observe any synergy when combined with LiCl. Treatment of the RA-resistant APL UF-1 cell line with RA or LiCl alone does not induce differentiation. Combination of RA+LiCl restores differentiation after 3 days of culture (65% CD11b positive and 55% NBT test positive cells). Similar results were obtained with different GSK3 inhibitors, suggesting that the LiCL effects were in part linked to its well characterized GSK3 inhibitory activity. Interestingly, we noted that LiCl treatment induces rapid phosphorylation of ERK1/2 and pretreatment with the MEK/ERK1/2 inhibitor UO126 fully abolished the differentiation induced by the RA+LiCl combination. The combination restores in UF-1 the expression of RA target genes (such as RARα2) to the same levels obtained in NB4 cells treated by RA alone. The level of luciferase activity of an RA responsive element reporter gene was increased with the RA+LiCl combination compared to RA alone. Both target gene expression and luciferase activiy were abolished after inhibition of the MEK/ERK1/2 pathway. Thus, increase in differentiation of UF-1 cells by RA+LiCl is linked to increased RA transcriptional activation. Similar studies in fresh APL patient cells confirmed both the increase in differentiation and level of RA target gene expression and their inhibition by UO126. Finally, to translate these findings in vivo, we used the APL-transplantable mouse model. Plasma lithium levels in treated mice were measured between 0.6 and 1.05 mmol/l, levels reached in humans. When LiCl was combined with RA we repeatedly observed a pronounced survival advantage compared to mice treated by RA alone as evaluated by Kaplan Meier analysis. In this work we demonstrate that LiCl, a well tolerated agent in humans, has the potential, when combined with RA, to restore RA induced transcriptional activation and differentiation in RA resistant APL cells. Furthermore, this combination also increases RA efficacy in an in vivo APL mouse model. Disclosures: Off Label Use: Lithium is a mood modulator administered for bipolar disorders.

Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3607-3616 ◽  
Author(s):  
Y. Chen ◽  
J.R. Cardinaux ◽  
R.H. Goodman ◽  
S.M. Smolik

Hedgehog (HH) is an important morphogen involved in pattern formation during Drosophila embryogenesis and disc development. cubitus interruptus (ci) encodes a transcription factor responsible for transducing the hh signal in the nucleus and activating hh target gene expression. Previous studies have shown that CI exists in two forms: a 75 kDa proteolytic repressor form and a 155 kDa activator form. The ratio of these forms, which is regulated positively by hh signaling and negatively by PKA activity, determines the on/off status of hh target gene expression. In this paper, we demonstrate that the exogenous expression of CI that is mutant for four consensus PKA sites [CI(m1-4)], causes ectopic expression of wingless (wg) in vivo and a phenotype consistent with wg overexpression. Expression of CI(m1-4), but not CI(wt), can rescue the hh mutant phenotype and restore wg expression in hh mutant embryos. When PKA activity is suppressed by expressing a dominant negative PKA mutant, the exogenous expression of CI(wt) results in overexpression of wg and lethality in embryogenesis, defects that are similar to those caused by the exogenous expression of CI(m1-4). In addition, we demonstrate that, in cell culture, the mutation of any one of the three serine-containing PKA sites abolishes the proteolytic processing of CI. We also show that PKA directly phosphorylates the four consensus phosphorylation sites in vitro. Taken together, our results suggest that positive hh and negative PKA regulation of wg gene expression converge on the regulation of CI phosphorylation.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4282-4289 ◽  
Author(s):  
Wenlin Shao ◽  
Laura Benedetti ◽  
William W. Lamph ◽  
Clara Nervi ◽  
Wilson H. Miller

Abstract The unique t(15; 17) of acute promyelocytic leukemia (APL) fuses the PML gene with the retinoic acid receptor α (RARα) gene. Although retinoic acid (RA) inhibits cell growth and induces differentiation in human APL cells, resistance to RA develops both in vitro and in patients. We have developed RA-resistant subclones of the human APL cell line, NB4, whose nuclear extracts display altered RA binding. In the RA-resistant subclone, R4, we find an absence of ligand binding of PML-RARα associated with a point mutation changing a leucine to proline in the ligand-binding domain of the fusion PML-RARα protein. In contrast to mutations in RARα found in retinoid-resistant HL60 cells, in this NB4 subclone, the coexpressed RARα remains wild-type. In vitro expression of a cloned PML-RARα with the observed mutation in R4 confirms that this amino acid change causes the loss of ligand binding, but the mutant PML-RARα protein retains the ability to heterodimerize with RXRα and thus to bind to retinoid response elements (RAREs). This leads to a dominant negative block of transcription from RAREs that is dose-dependent and not relieved by RA. An unrearranged RARα engineered with this mutation also lost ligand binding and inhibited transcription in a dominant negative manner. We then found that the mutant PML-RARα selectively alters regulation of gene expression in the R4 cell line. R4 cells have lost retinoid-regulation of RXRα and RARβ and the RA-induced loss of PML-RARα protein seen in NB4 cells, but retain retinoid-induction of CD18 and CD38. Thus, the R4 cell line provides data supporting the presence of an RARα-mediated pathway that is independent from gene expression induced or repressed by PML-RARα. The high level of retinoid resistance in vitro and in vivo of cells from some relapsed APL patients suggests similar molecular changes may occur clinically.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 114-123 ◽  
Author(s):  
S Matikainen ◽  
T Ronni ◽  
M Hurme ◽  
R Pine ◽  
I Julkunen

All-trans-retinoic acid (ATRA) is the drug of choice in the treatment of acute promyelocytic leukemia (APL). ATRA induces both in vitro and in vivo differentiation of APL cells into mature granulocytes. However, the molecular mechanisms involved in ATRA-dependent growth inhibition and cellular differentiation are not presently understood. The NB4 cell line, which is derived from the bone marrow of a patient with APL during relapse, can be used as a model system to study the growth and differentiation of APL cells. Because interferon (IFN) regulatory factors (IRF-1 and IRF-2) and other IFN-inducible gene products regulate cell growth, we analyzed the effects of ATRA on the expression of these genes. We show that ATRA directly activates IRF-1 gene expression, followed by activation of IRF-2 and 2′–5′ oligoadenylate synthetase (OAS) gene expression with slower kinetics. In addition to NB4 cells, ATRA also activated IRF-1 gene expression in HL-60, U937, and THP-1 cells, which all respond to ATRA by growth inhibition. A more than additive increase in IRF-1 gene expression was seen with ATRA and IFN-gamma in NB4 cells. ATRA did not activate nuclear factor kappa B or signal transducer and activator of transcription (STAT) activation pathways, suggesting that an alternate mechanism is involved in IRF-1 gene activation. The ATRA-induced expression of IRF-1, an activator of transcription and repressor of transformation, may be one of the molecular mechanisms of ATRA-induced growth inhibition, and the basis for the synergistic actions of ATRA and IFNs in myeloid leukemia cells.


1999 ◽  
Vol 19 (12) ◽  
pp. 8219-8225 ◽  
Author(s):  
Hiroshi Asahara ◽  
Sanjoy Dutta ◽  
Hung-Ying Kao ◽  
Ronald M. Evans ◽  
Marc Montminy

ABSTRACT Homeobox (hox) proteins have been shown to regulate cell fate and segment identity by promoting the expression of specific genetic programs. In contrast to their restricted biological action in vivo, however, most homeodomain factors exhibit promiscuous DNA binding properties in vitro, suggesting a requirement for additional cofactors that enhance target site selectivity. In this regard, thepbx family of homeobox genes has been found to heterodimerize with and thereby augment the DNA binding activity of certain hox proteins on a subset of potential target sites. Here we examine the transcriptional properties of a forcedhox-pbx heterodimer containing the pancreas-specific orphan homeobox factor pdx fused to pbx-1a. Compared to the pdx monomer, the forced pdx-pbx1a dimer, displayed 10- to 20-fold-higher affinity for a consensushox-pbx binding site but was completely unable to bind ahox monomer recognition site. The pdx-pbx dimer stimulated target gene expression via an N-terminaltrans-activation domain in pdx that interacts with the coactivator CREB binding protein. The pdx-pbxdimer was also found to repress transcription via a C-terminal domain in pbx-1a that associates with the corepressors SMRT and NCoR. The transcriptional properties of the pdx-pbx1complex appear to be regulated at the level of alternative splicing; apdx-pbx polypeptide containing the pbx1bisoform, which lacks the C-terminal extension in pbx1a, was unable to repress target gene expression via NCoR-SMRT. Sincepbx1a and pbx1b are differentially expressed in endocrine versus exocrine compartments of the adult pancreas, our results illustrate a novel mechanism by which pbx proteins may modulate the expression of specific genetic programs, either positively or negatively, during development.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 114-123 ◽  
Author(s):  
S Matikainen ◽  
T Ronni ◽  
M Hurme ◽  
R Pine ◽  
I Julkunen

Abstract All-trans-retinoic acid (ATRA) is the drug of choice in the treatment of acute promyelocytic leukemia (APL). ATRA induces both in vitro and in vivo differentiation of APL cells into mature granulocytes. However, the molecular mechanisms involved in ATRA-dependent growth inhibition and cellular differentiation are not presently understood. The NB4 cell line, which is derived from the bone marrow of a patient with APL during relapse, can be used as a model system to study the growth and differentiation of APL cells. Because interferon (IFN) regulatory factors (IRF-1 and IRF-2) and other IFN-inducible gene products regulate cell growth, we analyzed the effects of ATRA on the expression of these genes. We show that ATRA directly activates IRF-1 gene expression, followed by activation of IRF-2 and 2′–5′ oligoadenylate synthetase (OAS) gene expression with slower kinetics. In addition to NB4 cells, ATRA also activated IRF-1 gene expression in HL-60, U937, and THP-1 cells, which all respond to ATRA by growth inhibition. A more than additive increase in IRF-1 gene expression was seen with ATRA and IFN-gamma in NB4 cells. ATRA did not activate nuclear factor kappa B or signal transducer and activator of transcription (STAT) activation pathways, suggesting that an alternate mechanism is involved in IRF-1 gene activation. The ATRA-induced expression of IRF-1, an activator of transcription and repressor of transformation, may be one of the molecular mechanisms of ATRA-induced growth inhibition, and the basis for the synergistic actions of ATRA and IFNs in myeloid leukemia cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2750-2750
Author(s):  
Akihiro Tomita ◽  
Akihide Atsumi ◽  
Hitoshi Kiyoi ◽  
Tomoki Naoe

Abstract PML-RARα is a chimeric transcription factor deeply associated with acute promyelocytic leukemia (APL). PML-RARα plays an important role in the aberrant transcription repression on the target genes of wild type retinoic acid receptors (RARα). Pharmacological concentration of all-trans retinoic acid (ATRA) induces transcription de-repression on several target genes, and results in terminal differentiation of APL cells. However, the detailed mechanisms of transcription repression by PML-RARα in vivo are still unclear. Here we demonstrated that histone deacetylase 3 (HDAC3), one component of the N-CoR (nuclear receptor co-repressor)-TBL1/R1 (transducin beta-like protein 1/relating protein) transcription repressor protein complex, is a key regulator of the transcription repression by PML-RARα in vivo. Using immunoprecipitation (IP) assay, we first demonstrated that PML-RARα physically interacted with N-CoR/HDAC3 in vivo in the absence of ligand. The interaction was dissociated by adding ATRA in the dose dependent manner. Next we showed, using chromatin immunoprecipitation (ChIP) assay, that N-CoR/HDAC3 co-repressor complex was recruited to the endogenous target gene promoters (RARβ and CYP26) through PML-RARα. The neighboring histone H4 was de-acetylated and the gene expression was significantly repressed. When HDAC3 protein is knocked down by RNA interference in PML-RARα-presenting cells, the endogenous target gene expression was significantly activated. Almost the same results were also obtained when performing the luciferase reporter assay using RARβ and CYP26 promoter reporter vectors. Previously, we have shown that N-CoR-TBLR1 is recruited to the target gene promoter through PML-RARα in the absence of ligand, resulting in the transcription repression. Consistent with these data, it is strongly suggested that N-CoR/HDAC3/TBLR1 co-repressor complex is closely related to the aberrant transcription regulation by PML-RARα in APL cells. Furthermore, we also confirmed that PLZF-RARα, which is expressed in ATRA resistant APL cells, interacted with N-CoR/HDAC3/TBLR1 in ligand independent manner. These insights provide not only the basic mechanism of transcription repression by leukemia-related chimeric transcription factors, but also the new molecular targets for the transcription therapy for leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1034-1034
Author(s):  
Wenxue Ma ◽  
Alejandro Gutierrez ◽  
Daniel Goff ◽  
Angela Court-Recart ◽  
Alice Shih ◽  
...  

Abstract Abstract 1034 Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is a therapeutically recalcitrant malignancy that accounts for approximately 15% of pediatric and 25% of adult ALL cases. In leukemia, cancer stem cells constitute a relatively rare population of tumor cells that play a key role in cancer propagation and, like adult stem cells, have enhanced self-renewal potential. A previous report showed that following in vitro culture, CD34+/CD4- and CD34+/CD7- subfractions of T-ALL marrow were enriched for leukemia stem cells (LSC) capable of engrafting leukemia in nonobese diabetic/severe combined immune deficient mouse (NOD/SCID). However, difficulties in maintaining primary cultures of leukemia cells hampered investigations into the biology of T-ALL underscoring the need for a direct transplantation model to characterize human LSC in vivo and as a paradigm for screening candidate drugs that inhibit self-renewal pathways active in T-ALL. Experimental Procedures: Quantitative RT-PCR of NOTCH target gene expression and NOTCH mutation DNA sequencing analysis was performed on human CD34+ cells from T-ALL patient samples (n =12). To develop a humanized mouse model of T-ALL, CD34+ progenitors were lentivirally transduced with GFP-Luciferase Fusion protein (GLF) and transplanted intrahepatically into neonatal T, B, and NK cell deficient mice. In some experiments, FACS purified CD34+ subpopulations were transplanted at limiting dilution, including CD34+CD38+CD2+Lin- cells. Leukemic engraftment was monitored by in vivo bioluminescence imaging and analyzed by FACS detection of human CD34+ cells in liver, bone marrow, spleen and thymus when mice were sacrificed at 8–10 weeks post-transplant. NOTCH1 target gene expression was analyzed by q-RT-PCR in human CD34+ cells derived from engrafted tissues and NOTCH mutation analysis was performed by DNA sequencing on the same population. To assay LSC self-renewal, engrafted human CD34+ cells from bone marrow were transplanted into secondary and tertiary recipients. In serially transplanted mice, NOTCH1 target gene expression, NOTCH1 receptor expression was analyzed by FACS and NICD expression was assessed in the bone marrow by immunohistochemistry. Results: Q-RT-PCR data showed that NOTCH1, HES1 and c-MYC expression correlated with NOTCH 1 mutation status as well as the emergence of a CD34+CD2+Lin- population not evident in normal cord blood. We transplanted 12 T-ALL patient samples with detectable Notch1 expression and 100% of samples engrafted RAG 2-/- gamma c-/- mice. Transplanted LSC could be tracked for 10 weeks after transplant by in vivo bioluminescent imaging while Lin+ engraftment declined. Human CD34+/CD45+ cells, CD45+/CD34+/CD38+/Lin−/CD2+ cells were found in the bone marrow, thymus, spleen of the engrafted mice at 9–10 weeks post transplant or the end of dosing. Finally, human CD34+ cells engrafted secondary and tertiary recipients with T-ALL demonstrating their propensity for self-renewal and differentiation. Notch1 target gene and Hes1 expression was higher in patients with Notch1 mutation identified by sequencing. Conclusion: Serially transplantable candidate LSC retain high level NOTCH1 target gene expression and may be uniquely susceptible to targeted NOTCH1 receptor inhibition. Disclosures: Jamieson: Pfizer: Research Funding.


2014 ◽  
Vol 469 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Niek G.J. Leus ◽  
Henriëtte W.M. Morselt ◽  
Peter J. Zwiers ◽  
Piotr S. Kowalski ◽  
Marcel H.J. Ruiters ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document