scholarly journals A Novel Rat Model of Hereditary Hemochromatosis Due to a Mutation in Transferrin Receptor 2

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 612-612
Author(s):  
Thomas Benedict Bartnikas ◽  
Sheryl Wildt ◽  
Amy Wineinger ◽  
Klaus Schmitz-Abe ◽  
Kyriacos Markianos ◽  
...  

Abstract Abstract 612 Sporadic iron overload has been reported previously in rats but the underlying cause has not been ascertained. In this study, phenotypic analysis of a subpopulation of Wistar rats designated Hsd:HHCL revealed a low incidence of histologically detected liver iron overload. One rat out of 132 screened animals exhibited liver iron accumulation in a predominantly periportal, hepatocellular distribution; this male rat expressed low RNA levels of the iron regulatory hormone hepcidin and low protein levels of transferrin receptor 2, a membrane protein essential for hepcidin expression in humans and mice and mutated in forms of hereditary hemochromatosis, a disease of excessive intestinal iron absorption and progressive tissue iron overload. Sequencing of the transferrin receptor 2 gene in the iron-overloaded rat revealed a novel Ala679Gly polymorphism affecting a highly conserved residue. Quantitative trait locus mapping revealed that a transferrin receptor 2 polymorphism correlated strongly with serum iron and transferrin saturations in male rats. Transfection of Tfr2 expression constructs into tissue culture cell lines revealed that the Gly679 Tfr2 variant is expressed at a lower level than the Ala679 variant. Selective breeding of rats carrying this polymorphism and characterization of iron metabolism in the resulting progeny indicated that homozygosity for the Ala679Gly allele leads to a hemochromatosis phenotype. The Hsd:HHCL rat is the first genetic rat model of hereditary hemochromatosis and may prove useful for understanding the molecular mechanisms underlying the regulation of iron metabolism and the pathogenesis of hereditary hemochromatosis. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Author(s):  
Zachary Hawula ◽  
Eriza Secondes ◽  
Daniel Wallace ◽  
Gautam Rishi ◽  
V. Nathan Subramaniam

The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wild type mice either injected or fed high iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homeostasis has not yet been investigated. In this study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary hemochromatosis patients who have a defect in Transferrin Receptor 2. Male Transferrin Receptor 2 knockout mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum, and spleen were assessed. In addition, hepatic ferritin protein levels were determined by western blotting, and expression of iron homeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.


2000 ◽  
Vol 97 (5) ◽  
pp. 2214-2219 ◽  
Author(s):  
R. E. Fleming ◽  
M. C. Migas ◽  
C. C. Holden ◽  
A. Waheed ◽  
R. S. Britton ◽  
...  

2020 ◽  
Vol 295 (12) ◽  
pp. 3906-3917 ◽  
Author(s):  
Aaron M. Wortham ◽  
Devorah C. Goldman ◽  
Juxing Chen ◽  
William H. Fleming ◽  
An-Sheng Zhang ◽  
...  

Transferrin receptor 2 (TFR2) is a transmembrane protein expressed mainly in hepatocytes and in developing erythroid cells and is an important focal point in systemic iron regulation. Loss of TFR2 function results in a rare form of the iron-overload disease hereditary hemochromatosis. Although TFR2 in the liver has been shown to be important for regulating iron homeostasis in the body, TFR2's function in erythroid progenitors remains controversial. In this report, we analyzed TFR2-deficient mice in the presence or absence of iron overload to distinguish between the effects caused by a high iron load and those caused by loss of TFR2 function. Analysis of bone marrow from TFR2-deficient mice revealed a reduction in the early burst-forming unit–erythroid and an expansion of late-stage erythroblasts that was independent of iron overload. Spleens of TFR2-deficient mice displayed an increase in colony-forming unit–erythroid progenitors and in all erythroblast populations regardless of iron overload. This expansion of the erythroid compartment coincided with increased erythroferrone (ERFE) expression and serum erythropoietin (EPO) levels. Rescue of hepatic TFR2 expression normalized hepcidin expression and the total cell count of the bone marrow and spleen, but it had no effect on erythroid progenitor frequency. On the basis of these results, we propose a model of TFR2's function in murine erythropoiesis, indicating that deficiency in this receptor is associated with increased erythroid development and expression of EPO and ERFE in extrahepatic tissues independent of TFR's role in the liver.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1803-1806 ◽  
Author(s):  
Elizabeta Nemeth ◽  
Antonella Roetto ◽  
Giovanni Garozzo ◽  
Tomas Ganz ◽  
Clara Camaschella

Abstract The hepatic peptide hepcidin is the key regulator of iron metabolism in mammals. Recent evidence indicates that certain forms of hereditary hemochromatosis are caused by hepcidin deficiency. Juvenile hemochromatosis is associated with hepcidin or hemojuvelin mutations, and these patients have low or absent urinary hepcidin. Patients with C282Y HFE hemochromatosis also have inappropriately low hepcidin levels for the degree of iron loading. The relationship between the hemochromatosis due to transferrin receptor 2 (TFR2) mutations and hepcidin was unknown. We measured urinary hepcidin levels in 10 patients homozygous for TFR2 mutations, all with increased transferrin saturation. Urinary hepcidin was low or undetectable in 8 of 10 cases irrespective of the previous phlebotomy treatments. The only 2 cases with normal hepcidin values had concomitant inflammatory conditions. Our data indicate that TFR2 is a modulator of hepcidin production in response to iron. (Blood. 2005;105:1803-1806)


Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2841-2843 ◽  
Author(s):  
Gaël Nicolas ◽  
Nancy C. Andrews ◽  
Axel Kahn ◽  
Sophie Vaulont

Abstract Hereditary hemochromatosis (HH) type I is a disorder of iron metabolism caused by a mutation in the HFE gene. Whereas the prevalence of the mutation is very high, its penetrance seems very low. The goal of our study was to determine whether hepcidin, a recently identified iron-regulatory peptide, could be a genetic modifier contributing to the HH phenotype. In mice, deficiency of either HFE (Hfe-/-) or hepcidin (Usf2-/-) is associated with the same pattern of iron overload observed in patients with HH. We intercrossed Hfe-/- and Usf2+/- mice and asked whether hepcidin deficiency increased the iron burden in Hfe-/- mice. Our results showed that, indeed, liver iron accumulation was greater in the Hfe-/-Usf2+/- mice than in mice lacking Hfe alone. This result, in agreement with recent findings in humans, provides a genetic explanation for some variability of the HH phenotype. (Blood. 2004;103: 2841-2843)


Hematology ◽  
2014 ◽  
Vol 2014 (1) ◽  
pp. 216-221 ◽  
Author(s):  
Carla Casu ◽  
Stefano Rivella

Abstract Excess iron deposition in vital organs is the main cause of morbidity and mortality in patients affected by β-thalassemia and hereditary hemochromatosis. In both disorders, inappropriately low levels of the liver hormone hepcidin are responsible for the increased iron absorption, leading to toxic iron accumulation in many organs. Several studies have shown that targeting iron absorption could be beneficial in reducing or preventing iron overload in these 2 disorders, with promising preclinical data. New approaches target Tmprss6, the main suppressor of hepcidin expression, or use minihepcidins, small peptide hepcidin agonists. Additional strategies in β-thalassemia are showing beneficial effects in ameliorating ineffective erythropoiesis and anemia. Due to the suppressive nature of the erythropoiesis on hepcidin expression, these approaches are also showing beneficial effects on iron metabolism. The goal of this review is to discuss the major factors controlling iron metabolism and erythropoiesis and to discuss potential novel therapeutic approaches to reduce or prevent iron overload in these 2 disorders and ameliorate anemia in β-thalassemia.


Hematology ◽  
2000 ◽  
Vol 2000 (1) ◽  
pp. 39-50
Author(s):  
Gary M. Brittenham ◽  
Günter Weiss ◽  
Pierre Brissot ◽  
Fabrice Lainé ◽  
Anne Guillygomarc'h ◽  
...  

This review examines the clinical consequences for the practicing hematologist of remarkable new insights into the pathophysiology of disorders of iron and heme metabolism. The familiar proteins of iron transport and storage—transferrin, transferrin receptor, and ferritin—have recently been joined by a host of newly identified proteins that play critical roles in the molecular management of iron homeostasis. These include the iron-regulatory proteins (IRP-1 and -2), HFE (the product of the HFE gene that is mutated in most patients with hereditary hemochromatosis), the divalent metal transporter (DMT1), transferrin receptor 2, ceruloplasmin, hephaestin, the “Stimulator of Fe Transport” (SFT), frataxin, ferroportin 1 and others. The growing appreciation of the roles of these newly identified proteins has fundamental implications for the clinical understanding and laboratory evaluation of iron metabolism and its alterations with iron deficiency, iron overload, infection, and inflammation. In Section I, Dr. Brittenham summarizes current concepts of body and cellular iron supply and storage and reviews new means of evaluating the full range of body iron stores including genetic testing for mutations in the HFE gene, measurement of serum ferritin iron, transferrin receptor, reticulocyte hemoglobin content and measurement of tissue iron by computed tomography, magnetic resonance imaging and magnetic susceptometry using superconducting quantum interference device (SQUID) instrumentation. In Section II, Dr. Weiss discusses the improved understanding of the molecular mechanisms underlying alterations in iron metabolism due to chronic inflammatory disorders. The anemia of chronic disorders remains the most common form of anemia found in hospitalized patients. The network of interactions that link iron metabolism with cellular immune effector functions involving pro- and anti-inflammatory cytokines, acute phase proteins and oxidative stress is described, with an emphasis on the implications for clinical practice. In Section III, Dr. Brissot and colleagues discuss how the diagnosis and management of hereditary hemochromatosis has changed following the identification of the gene, HFE, that is mutated in most patients with hereditary hemochromatosis, and the subsequent development of a genotypic test. The current understanding of the molecular effects of HFE mutations, the usefulness of genotypic and phenotypic approaches to screening and diagnosis and recommendations for management are summarized.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 481-481 ◽  
Author(s):  
Shuling Guo ◽  
Carla Casu ◽  
Sara Gardenghi ◽  
Sheri Booten ◽  
Andy Watt ◽  
...  

Abstract Abstract 481 Hepcidin, the master regulator of iron homeostasis, is a peptide that is mainly expressed and secreted by the liver. Low levels of hepcidin are associated with increased iron absorption. In conditions in which hepcidin is chronically repressed, such as hereditary hemochromatosis and b-thalassemia, patients suffer from iron overload and very severe pathophysiological sequelae associated with this condition. Hepcidin expression is regulated predominantly at the transcriptional level by multiple factors. TMPRSS6, a transmembrane serine protease mutated in iron-refractory, iron-deficient anemia, is a major suppressor of hepcidin expression. It has been demonstrated that hepcidin expression is significantly elevated in Tmprss6−/− mice and reduction of Tmprss6 expression in hereditary hemochromatosis (Hfe−/−) mice ameliorates the iron overload phenotype (Finberg et al. Nature Genetics, 2008; Du et al. Science 2008; Folgueras et al. Blood 2008; Finberg et al., Blood, 2011). It has also been demonstrated that hepcidin up-regulation using either a hepcidin transgene or Tmprss6−/− significantly improves iron overload and anemia in a mouse model of β-thalassemia intermedia (th3/+ mice) (Gardenghi et al. JCI, 120:4466, 2010; Nai et al. Blood, 119: 5021, 2012). In this report, we have examined whether reduction of Tmprss6 expression using antisense technology is an effective approach for the treatment of hereditary hemochromatosis and β-thalassemia. Second generation antisense oligonucleotides (ASOs) targeting mouse Tmprss6 were identified. When normal male C57BL/6 mice were treated with 25, 50 and 100mg/kg/week ASO for four weeks, we achieved up to >90% reduction of liver Tmprss6 mRNA levels and up to 5-fold induction of hepcidin mRNA levels in a dose-dependent manner. Dose-dependent reductions of serum iron and transferrin saturation were also observed. ASOs were well tolerated in these animals. In Hfe−/− mice (both males and females), ASOs were administrated at 100 mg/kg for six weeks. This treatment normalized transferrin saturation (from 92% in control animals to 26% in treatment group) and significantly reduced serum iron (from >300ug/dl in control group to <150ug/dl in treatment group), as well as liver iron accumulation. Histopathological evaluation and Prussian's Perl Blue staining indicated that iron was sequestered by macrophages, which led to an increase in spleen iron concentration. The mouse model of thalassemia intermedia that we utilized mimics a condition defined as non-transfusion dependent thalassemia (NTDT) in humans. These patients exhibit increased iron absorption and iron overload due to ineffective erythropoiesis and suppression of hepcidin; iron overload is the most frequent cause of morbidity and mortality. Th3/+ animals exhibit ineffective erythropoiesis, characterized by increased proliferation and decreased differentiation of the erythroid progenitors, apoptosis of erythroblasts due to the presence of toxic hemichromes, reticulocytosis and shorter lifespan of red cells in circulation, leading to splenomegaly, extramedullary hematopoiesis and anemia (∼ 8 g/dL; Libani et al, Blood 112(3):875–85, 2008). Five month old th3/+ mice (both males and females) were treated with Tmprss6 ASO for six weeks. In th3/+ mice, ∼85% Tmprss6 reduction led to dramatic reductions of serum transferrin saturation (from 55–63% in control group down to 20–26% in treatment group). Liver iron concentration (LIC) was also greatly reduced (40–50%). Moreover, anemia endpoints were significantly improved with ASO treatment, including increases in red blood cells (∼30–40%), hemoglobin (∼2 g/dl), and hematocrit (∼20%); reduction of splenomegaly (∼50%); decrease of serum erythropoietin levels (∼50%); improved erythroid maturation as indicated by a strong reduction in reticulocyte number (50–70%) and in a normalized proportion between the pool of erythroblasts and enucleated erythroid cells. Hemichrome analysis showed a significant decrease in the formation of toxic alpha-globin/heme aggregates associated with the red cell membrane. This was consistent with a remarkable improvement of the red cell distribution width (RDW) as well as morphology of the erythrocytes. In conclusion, these data demonstrate that targeting TMPRSS6 using antisense technology is a promising novel therapy for the treatment of hereditary hemochromatosis and β-thalassemia. Disclosures: Guo: Isis Pharmaceuticals: Employment. Booten:Isis Pharmaceuticals: Employment. Watt:Isis Pharmaceuticals: Employment. Freier:Isis Pharmaceuticals: Employment. Rivella:Novartis Pharmaceuticals: Consultancy; Biomarin: Consultancy; Merganser Biotech: Consultancy, Equity Ownership, Research Funding; Isis Pharma: Consultancy, Research Funding. Monia:Isis Pharmaceuticals: Employment.


Sign in / Sign up

Export Citation Format

Share Document