scholarly journals The Effect of the Flavonol Rutin on Serum and Liver Iron Content in a Genetic Mouse Model of Iron Overload

2021 ◽  
Author(s):  
Zachary Hawula ◽  
Eriza Secondes ◽  
Daniel Wallace ◽  
Gautam Rishi ◽  
V. Nathan Subramaniam

The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wild type mice either injected or fed high iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homeostasis has not yet been investigated. In this study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary hemochromatosis patients who have a defect in Transferrin Receptor 2. Male Transferrin Receptor 2 knockout mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum, and spleen were assessed. In addition, hepatic ferritin protein levels were determined by western blotting, and expression of iron homeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.

Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1803-1806 ◽  
Author(s):  
Elizabeta Nemeth ◽  
Antonella Roetto ◽  
Giovanni Garozzo ◽  
Tomas Ganz ◽  
Clara Camaschella

Abstract The hepatic peptide hepcidin is the key regulator of iron metabolism in mammals. Recent evidence indicates that certain forms of hereditary hemochromatosis are caused by hepcidin deficiency. Juvenile hemochromatosis is associated with hepcidin or hemojuvelin mutations, and these patients have low or absent urinary hepcidin. Patients with C282Y HFE hemochromatosis also have inappropriately low hepcidin levels for the degree of iron loading. The relationship between the hemochromatosis due to transferrin receptor 2 (TFR2) mutations and hepcidin was unknown. We measured urinary hepcidin levels in 10 patients homozygous for TFR2 mutations, all with increased transferrin saturation. Urinary hepcidin was low or undetectable in 8 of 10 cases irrespective of the previous phlebotomy treatments. The only 2 cases with normal hepcidin values had concomitant inflammatory conditions. Our data indicate that TFR2 is a modulator of hepcidin production in response to iron. (Blood. 2005;105:1803-1806)


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 47-48
Author(s):  
Roopa Taranath ◽  
Gregory Bourne ◽  
Jie Zhang ◽  
Brian Frederick ◽  
Tran T Tran ◽  
...  

Hepcidin peptidomimetics that are orally stable and systemically active will mark a paradigm change in management of blood disorders that exhibit aberrant iron homeostasis (e.g. hereditary hemochromatosis) and in conditions that can be influenced by modulating stressed iron homeostasis (e.g. polycythemia vera). Hepcidin modulates the iron exporter membrane protein ferroportin and is the master regulator of iron homeostasis in the body. Orally bioavailable "Minihepcidins" have been previously shown to be efficacious in lowering serum iron in mice when dosed peroral (PO) (Preza GC et. al., Journal of Clinical Investigation 2011). Here we describe hepcidin mimetic peptides that are metabolically stable in the gastrointestinal tract, systemically absorbed when delivered orally, and pharmacodynamically active in reducing serum iron parameters in pre-clinical models. Further, we also demonstrate improvement in disease parameters in a mouse model for hereditary hemochromatosis. The oral peptides, PN20076 and PN20089, have EC50 of 16.5 nM and 1.39 nM respectively in cell based ferroportin internalization assay (Table 1). In comparison EC50 was 67.8 nM for Hepcidin and 6.12 nM for PTG-300. (PTG-300 is an injectable hepcidin mimetic currently in Phase 2 clinical studies for polycythemia vera and hereditary hemochromatosis.) Oral stability of the peptides was evaluated in a panel of assays, including in vitro matrices simulating the gastric and intestinal conditions, and ex vivo matrices of serum/plasma from different species. Table 1 shows data for peptides PN20018, PN20076 and PN20089. PN20076 demonstrated extended stability in gastric and intestinal conditions, and degradation half-life of >24 hr in mouse plasma and 14.8 hr in rat serum. Based on their stability and potency data from the above battery of screening assays, the peptides were selected for in vivo evaluation in healthy mice to characterize their pharmacodynamic (PD) and pharmacokinetic (PK) properties. PN20076 and PN20089 showed equivalent PD response of reduction in serum iron concentration in wild type mice. After two successive PO doses of PN20076 or PN20089 approximately 24 hr apart, serum iron concentration was reduced from ~30 µM to ~10 µM (group averages), i.e. ~66% reduction, at 4.5 hr post-second dose for both peptides (Fig. 1). At 4.5 hr post-dose, the serum concentration of PN20076 was ~262 nM. PN20076 was further evaluated for its effect in lowering iron overload in a mouse model for hemochromatosis (HFE2-/- with homozygous deletion of hemojuvelin, a positive regulator of hepcidin expression). This mouse model is marked by hyper-absorption of dietary iron, higher transferrin saturation and deposition of excessive iron in liver, all manifestations of aberrant iron homeostasis caused by the genetic disruptions of the hepcidin-iron pathway. Liver iron accumulation was significantly prevented in groups treated with PN20076 once daily (QD) by PO administration for over two weeks, as compared to vehicle treated controls (Fig. 2). The reduction in non-heme iron concentration in liver homogenates (measured using a colorimetric iron assay) was statistically significant in the female group treated with PN20076. We have described orally stable and systemically active hepcidin mimetic peptides and demonstrated oral activity in preventing liver iron overload in hemochromatosis mice. The effective reduction of iron absorption from the diet and the steady state lowering of transferrin-saturation can potentially prevent tissue iron toxicity in hereditary hemochromatosis. Similarly, the sustained reduction of systemic iron levels with an oral hepcidin mimetic to control stressed iron homeostasis should reduce excessive erythrocytosis, a hallmark of polycythemia vera and other congenital and acquired erythropoietic disorders. Disclosures Bourne: Protagonist Therapeutics: Current Employment, Other: shareholder. Zhang:Protagonist Therapeutics: Current Employment, Other: shareholder. Frederick:Protagonist Therapeutics: Current Employment, Other: shareholder. Tran:Protagonist Therapeutics: Current Employment, Other: shareholder. Vengalam:Protagonist Therapeutics: Current Employment, Current equity holder in private company. McMahon:Protagonist Therapeutics: Current Employment, Other: shareholder. Huie:Protagonist Therapeutics: Current Employment, Other: shareholder. Ledet:Protagonist Therapeutics: Current Employment, Other: shareholder. Zhao:Protagonist Therapeutics: Current Employment, Other: shareholder. Tovera:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Lee:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Yang:Protagonist Therapeutics: Current Employment, Other: shareholder. Dion:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Yuan:Protagonist Therapeutics: Current Employment, Other: shareholder. Zemede:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Nguyen:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Masjedizadeh:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Cheng:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Mattheakis:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Liu:Protagonist Therapeutics: Current Employment, Current equity holder in private company. Smythe:Protagonist Therapeutics: Current Employment, Other: shareholder.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3707-3711 ◽  
Author(s):  
Ronald L. Sham ◽  
Richard F. Raubertas ◽  
Caroline Braggins ◽  
Joseph Cappuccio ◽  
Margaret Gallagher ◽  
...  

Screening for hereditary hemochromatosis (HHC) by means of transferrin saturation (TS) levels has been advocated and will identify many patients who are asymptomatic. The purposes of this study were (1) to determine HFE genotypes among asymptomatic HHC patients and correlate this profile with the degree of iron overload and (2) to evaluate the relationship between mobilized iron (mob Fe), age, serum ferritin (SF), and quantitative hepatic iron (QHI) in this population. One hundred twenty-three asymptomatic HHC patients were evaluated; all had quantitative phlebotomy to determine mob Fe and genotyping for C282Y and H63D mutations. Liver biopsies with QHI determinations were performed on 72 of the 123 patients. Of the entire group, 60% were homozygous for C282Y, and 13% were compound heterozygotes (C282Y/H63D). Among asymptomatic patients, the prevalence of homozygous C282Y is lower compared with previous studies that include clinically affected patients. Of those patients with more than 4 g mob Fe, 77% were homozygous C282Y. Asymptomatic patients with lower iron burdens frequently had genotypes other than homozygous C282Y. There was no correlation between age and mob Fe in these patients; however, there was a correlation between mob Fe and both SF (r = 0.68) and QHI (r = 0.75). In conclusion, asymptomatic patients with moderate iron overload had a different genotypic profile than was seen in advanced iron overload. The significance of identifying patients with modest degrees of iron loading, who may not be homozygous for C282Y, must be addressed if routine TS screening is to be implemented.


Author(s):  
Chiara Milanese ◽  
Sylvia Gabriels ◽  
Sander Barnhoorn ◽  
Silvia Cerri ◽  
Ayse Ulusoy ◽  
...  

AbstractAlterations in the metabolism of iron and its accumulation in the substantia nigra pars compacta accompany the pathogenesis of Parkinson’s disease (PD). Changes in iron homeostasis also occur during aging, which constitutes a PD major risk factor. As such, mitigation of iron overload via chelation strategies has been considered a plausible disease modifying approach. Iron chelation, however, is imperfect because of general undesired side effects and lack of specificity; more effective approaches would rely on targeting distinctive pathways responsible for iron overload in brain regions relevant to PD and, in particular, the substantia nigra. We have previously demonstrated that the Transferrin/Transferrin Receptor 2 (TfR2) iron import mechanism functions in nigral dopaminergic neurons, is perturbed in PD models and patients, and therefore constitutes a potential therapeutic target to halt iron accumulation. To validate this hypothesis, we generated mice with targeted deletion of TfR2 in dopaminergic neurons. In these animals, we modeled PD with multiple approaches, based either on neurotoxin exposure or alpha-synuclein proteotoxic mechanisms. We found that TfR2 deletion can provide neuroprotection against dopaminergic degeneration, and against PD- and aging-related iron overload. The effects, however, were significantly more pronounced in females rather than in males. Our data indicate that the TfR2 iron import pathway represents an amenable strategy to hamper PD progression. Data also suggest, however, that therapeutic strategies targeting TfR2 should consider a potential sexual dimorphism in neuroprotective response.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 685-685
Author(s):  
Martina U. Muckenthaler ◽  
Maja Vujic Spasic ◽  
Katarzyna Mleczko-Sanecka ◽  
Mingang Zhu ◽  
Rainer Pepperkok ◽  
...  

Abstract Abstract 685 To identify genes that modify the severity of human iron disorders we pre-selected 74 genes from gene expression profiles of cells and tissues with altered iron levels and assessed whether siRNA-mediated knock-down of these genes affects uptake of transferrin, a key cellular process to acquire iron. This screen identifies the monocyte chemoattractant protein-1 (MCP-1), also known as CCL2, as a critical suppressor of transferrin receptor mRNA expression in human cells. We next analyzed CCL2-deficient mice and demonstrate profound alterations of parameters of systemic iron homeostasis. Specifically, CCL2 knock-out mice show decreased serum iron levels and transferrin saturation, strong iron-overload in the spleen and duodenum as well as mild iron accumulation in the liver. Iron imbalance in CCL2−/− mice is unlikely explained by an impairment of the major control system of systemic iron homeostasis, the hepcidin/ferroportin regulatory system: hepcidin mRNA expression is unaltered and splenic ferroportin protein expression is strongly increased in CCL2−/− mice, as would be expected as a consequence of splenic iron overload. We speculate that increased iron absorption from the plasma, possibly mediated by inappropriately high levels of TfR1 in the spleen, duodenum and liver, may be responsible for tissue iron overload. It is of note that CCL2 levels are strongly decreased in Hfe-deficient mice and patients with Hfe-associated Hereditary Hemochromatosis (HH). We therefore asked whether CCL2 levels could modify disease severity of HH. Analysis of 51 HH patients, all homozygous for the C282Y HFE mutation, confirms significantly lower MCP-1 levels in the serum compared to a group of 23 sex- and age-matched normal controls. Importantly, CCL2 levels in HH patients show a significant negative correlation with liver iron overload at the time point of diagnosis. Furthermore, low CCL2 concentrations are significantly associated with the HLA-A3 genotype and the CD8+ T lymphocyte phenotype, both traits previously shown to correlate with iron overload in HH patients. These patient data and the data from CCL2-deficient mice suggest that appropriate CCL2 expression is required to prevent iron overload. Taken together our data demonstrate the power of siRNA screens to identify novel regulators of iron metabolism in human cells that are critically involved in maintaining systemic iron homeostasis in the mouse and that play a role in modifying hepatic iron overload in the frequent iron overload disorder Hereditary Hemochromatosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 429-429
Author(s):  
Daniel F Wallace ◽  
Cameron J McDonald ◽  
Eriza S Secondes ◽  
Lesa Ostini ◽  
Gautam Rishi ◽  
...  

Abstract Iron deficiency and iron overload are common clinical conditions that impact on the health and wellbeing of up to 30% of the world’s population. Understanding mechanisms regulating iron homeostasis will provide improved strategies for treating these disorders. The liver-expressed proteins matriptase-2 (encoded by TMPRSS6), HFE and transferrin receptor 2 (TFR2) play important and opposing roles in systemic iron homeostasis by regulating expression of the iron regulatory hormone hepcidin. Mutations in TMPRSS6 lead to iron refractory iron deficiency anemia, whereas mutations in HFE and TFR2 lead to the iron overload disorder hereditary hemochromatosis. To elucidate the competing roles of these hepcidin regulators, we created mice lacking matriptase-2, Hfe and Tfr2. Tmprss6 -/-/Hfe-/-/Tfr2-/- mice had iron deficiency anemia resulting from hepatic hepcidin over-expression and activation of Smad1/5/8, indicating that matriptase-2 predominates over Hfe and Tfr2 in hepcidin regulation. Surprisingly, this anemia was more severe than in the Tmprss6-/- mice, demonstrated by more extensive alopecia, lower hematocrit and significant extramedullary erythropoiesis in the spleen. There was increased expression of erythroid-specific genes in the spleens of Tmprss6-/-/Hfe-/-/Tfr2-/- mice, consistent with the extramedullary erythropoiesis. Expression of Tfr2 but not Hfe in the spleen was increased in the Tmprss6-/- mice compared to wild type and correlated with the expression of erythroid genes, suggesting that Tfr2 is expressed in erythroid cells. Further analysis of gene expression in the bone marrow suggests that the loss of Tfr2 in the erythroid cells of Tmprss6-/-/Hfe-/-/Tfr2-/- mice causes a delay in the differentiation process leading to a more severe phenotype. In conclusion, our results indicate that Hfe and Tfr2 act upstream of matriptase-2 in hepcidin regulation or in a way that is overridden when matriptase-2 is deleted. These results indicate that inhibition of matriptase-2 would be useful in the treatment of iron overload conditions such as hereditary hemochromatosis. We have also identified a novel role for Tfr2 in erythroid differentiation that is separate from its canonical role as a regulator of iron homeostasis in the liver. This important role of Tfr2 in erythropoiesis only becomes apparent during conditions of iron restriction. Our results provide novel insights into mechanisms regulating and linking iron homeostasis and erythropoiesis. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 11 (4) ◽  
pp. 115 ◽  
Author(s):  
Antonella Roetto ◽  
Mariarosa Mezzanotte ◽  
Rosa Pellegrino

Iron homeostasis is a tightly regulated process in all living organisms because this metal is essential for cellular metabolism, but could be extremely toxic when present in excess. In mammals, there is a complex pathway devoted to iron regulation, whose key protein is hepcidin (Hepc), which is a powerful iron absorption inhibitor mainly produced by the liver. Transferrin receptor 2 (Tfr2) is one of the hepcidin regulators, and mutations in TFR2 gene are responsible for type 3 hereditary hemochromatosis (HFE3), a genetically heterogeneous disease characterized by systemic iron overload. It has been recently pointed out that Hepc production and iron regulation could be exerted also in tissues other than liver, and that Tfr2 has an extrahepatic role in iron metabolism as well. This review summarizes all the most recent data on Tfr2 extrahepatic role, taking into account the putative distinct roles of the two main Tfr2 isoforms, Tfr2α and Tfr2β. Representing Hepc modulation an effective approach to correct iron balance impairment in common human diseases, and with Tfr2 being one of its regulators, it would be worthwhile to envisage Tfr2 as a therapeutic target.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 371-376 ◽  
Author(s):  
Sven G. Gehrke ◽  
Hasan Kulaksiz ◽  
Thomas Herrmann ◽  
Hans-Dieter Riedel ◽  
Karin Bents ◽  
...  

Abstract Experimental data suggest the antimicrobial peptide hepcidin as a central regulator in iron homeostasis. In this study, we characterized the expression of human hepcidin in experimental and clinical iron overload conditions, including hereditary hemochromatosis. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we determined expression of hepcidin and the most relevant iron-related genes in liver biopsies from patients with hemochromatosis and iron-stain-negative control subjects. Regulation of hepcidin mRNA expression in response to transferrin-bound iron, non-transferrin-bound iron, and deferoxamine was analyzed in HepG2 cells. Hepcidin expression correlated significantly with serum ferritin levels in controls, whereas no significant up-regulation was observed in patients with hemochromatosis despite iron-overload conditions and high serum ferritin levels. However, patients with hemochromatosis showed an inverse correlation between hepcidin transcript levels and the serum transferrin saturation. Moreover, we found a significant correlation between hepatic transcript levels of hepcidin and transferrin receptor-2 irrespective of the iron status. In vitro data indicated that hepcidin expression is down-regulated in response to non-transferrin-bound iron. In conclusion, the presented data suggest a close relationship between the transferrin saturation and hepatic hepcidin expression in hereditary hemochromatosis. Although the causality is not yet clear, this interaction might result from a down-regulation of hepcidin expression in response to significant levels of non-transferrin-bound iron. (Blood. 2003;102:371-376)


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3707-3711 ◽  
Author(s):  
Ronald L. Sham ◽  
Richard F. Raubertas ◽  
Caroline Braggins ◽  
Joseph Cappuccio ◽  
Margaret Gallagher ◽  
...  

Abstract Screening for hereditary hemochromatosis (HHC) by means of transferrin saturation (TS) levels has been advocated and will identify many patients who are asymptomatic. The purposes of this study were (1) to determine HFE genotypes among asymptomatic HHC patients and correlate this profile with the degree of iron overload and (2) to evaluate the relationship between mobilized iron (mob Fe), age, serum ferritin (SF), and quantitative hepatic iron (QHI) in this population. One hundred twenty-three asymptomatic HHC patients were evaluated; all had quantitative phlebotomy to determine mob Fe and genotyping for C282Y and H63D mutations. Liver biopsies with QHI determinations were performed on 72 of the 123 patients. Of the entire group, 60% were homozygous for C282Y, and 13% were compound heterozygotes (C282Y/H63D). Among asymptomatic patients, the prevalence of homozygous C282Y is lower compared with previous studies that include clinically affected patients. Of those patients with more than 4 g mob Fe, 77% were homozygous C282Y. Asymptomatic patients with lower iron burdens frequently had genotypes other than homozygous C282Y. There was no correlation between age and mob Fe in these patients; however, there was a correlation between mob Fe and both SF (r = 0.68) and QHI (r = 0.75). In conclusion, asymptomatic patients with moderate iron overload had a different genotypic profile than was seen in advanced iron overload. The significance of identifying patients with modest degrees of iron loading, who may not be homozygous for C282Y, must be addressed if routine TS screening is to be implemented.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4287-4293 ◽  
Author(s):  
Martha B. Johnson ◽  
Caroline A. Enns

Abstract Transferrin receptor 2 (TfR2) is a type 2 transmembrane protein expressed in hepatocytes that binds iron-bound transferrin (Tf). Mutations in TfR2 cause one form of hereditary hemochromatosis, a disease in which excessive absorption of dietary iron can lead to liver cirrhosis, diabetes, arthritis, and heart failure. The function of TfR2 in iron homeostasis is unknown. We have studied the regulation of TfR2 in HepG2 cells. Western blot analysis shows that TfR2 increases in a time- and dose-dependent manner after diferric Tf is added to the culture medium. In cells exposed to diferric Tf, the amount of TfR2 returns to control levels within 8 hours after the removal of diferric Tf from the medium. However, TfR2 does not increase when non–Tf-bound iron (FeNTA) or apo Tf is added to the medium. The response to diferric Tf appears to be hepatocyte specific. Real-time quantitative reverse transcription–polymerase chain reaction (qRT-PCR) analysis shows that TfR2 mRNA levels do not change in cells exposed to diferric Tf. Rather, the increase in TfR2 is attributed to an increase in the half-life of TfR2 protein in cells exposed to diferric Tf. Our results support a role for TfR2 in monitoring iron levels by sensing changes in the concentration of diferric Tf.


Sign in / Sign up

Export Citation Format

Share Document