Perturbed Hematopoiesis In Mice Lacking ATMIN (an ATM co-Factor)

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2412-2412
Author(s):  
Fernando Anjos-Afonso ◽  
Joanna Loizou ◽  
Dominique Bonnet ◽  
Axel Behrens

Abstract ATM (Ataxia telangiectasia mutated) kinase plays important roles in hematopoiesis. Two co-factors participate in ATM activation in a signal-dependent manner: NBS1 during ionising radiation induced DNA damage and ATMIN under hypotonic stress or chloroquine treatment, presumably due to changes in chromatin structure. Such artificial treatments might not have a genuine biological significance. However, we have recently shown a potential role for ATMIN in B cells. CD19-Cre mediated deletion of Atmin led to impaired class switch recombination, greatly increased genomic instability and consequently the development of B cell lymphomas. Considerable (but not total) overlap in phenotypes was found in ATM and ATMIN deficient B cells suggesting that ablation of ATMIN alters ATM function. As Atm-/- HSCs have impaired quiescence, maintenance and reconstitution capacity due to elevated reactive oxygen species, we sought to investigate if the absence of ATMIN would affect the primitive hematopoietic compartment. We used a Vav-Cre approach to delete Atmin to test ATMIN’s functions in the hematopoietic system (simply referred as AtminΔ/Δ). At steady state, AtminΔ/Δ mice have ∼75% reduction in total splenocytes as compared to control mice. This is mainly due to reduced B cell, but also T cell, numbers. However, AtminΔ/Δ mice do not develop B cell lymphomas but they present differentiation block at the pre-B cell and at the immature/mature re-circulating B (IgM+/hi) cell stages with more than a 2-fold increase in apoptosis in these cell fractions compared to controls. The lack of lymphoma development in these mice suggests that the lack of ATMIN would also affect the more primitive compartment (e.g. CLP), not allowing tumorigenic clones to accumulate. Indeed, in the bone marrow (BM), a ∼40% reduction in total cellularity was observed in ATMIN deficient mice compared to littermate controls at 8-12 wks of age. This reduction in total cellularity is reflected across the board, from LT-HSCs (LSK/CD34-/lo/Flt3-) to the more mature cells and, more evidently, B cells. Apart from a similar B cell maturation block seen in the spleen, the frequency of CMPs (LS-K/IL7R-/CD34+/FcγR−) and GMPs (LS-K/IL7R-/CD34+/FcγR+) were reduced by 3- and 2-fold, respectively, in ATMIN deficient mice. The frequencies of other primitive compartments were not different in ATMIN deficient mice vs controls, including the CLP (LS-Klo/IL7R+) fraction. This reduction in CMP and GMP fractions translated into a ∼50% reduction in CFU capacity. Interestingly, only LT-HSCs, ST-HSCs and MPPs were found to be more cycling in the absence of ATMIN, suggesting a compensatory mechanism due to the reduction in some of the compartments downstream of LSK. Unlike in B cells, no increase in apoptosis was found in any other ATMIN deficient BM cell types, implying that the function of ATMIN is dependent on the context of the cell. When transplanting similar numbers of ATMIN or control LT-HSCs, the regenerative capacity of AtminΔ/Δ-Vav-Cre cells was reduced by ∼16-fold in peripheral blood at 16 wks post-transplantation, with an early pronounced ∼10-fold reduction in B220+ cell production that was maintained over time. We found a steady decline in the production of myeloid cells over time, reaching a ∼13-fold difference between AtminΔ/Δ-Vav-Cre and control transplanted cells. However, in secondary recipients transplanted with a similar number of LSK cells, the regenerative capacity of AtminΔ/Δ-Vav-Cre cells was only further reduced to ∼24-fold as compared to control cells at 16 wks post-transplant. Interestingly, when transplanting ST-HSCs, the regenerative capacity of this fraction was even more drastically reduced, reaching ∼51-fold difference between AtminΔ/Δ-Vav-Cre and control cells. Contrary to our predictions, oxidative stress does not seem to play any evident role in reducing CMP and GMP fractions. Interestingly, however, we observed a mild but significant phosphorylation of H2AX and a specific ATM substrate, KAP1, in only these myeloid progenitors suggesting activation of ATM signaling. Further studies are on going to test whether this to due to replicative stress. Overall, our studies highlight that ATMIN appears to have different roles in different cells and potential novel ATM-independent functions. Certainly, in the absence of ATMIN, hematopoiesis is severely altered, directly and/or indirectly affecting the function of LT-HSCs. Disclosures: No relevant conflicts of interest to declare.

2014 ◽  
Vol 307 (9) ◽  
pp. L692-L706 ◽  
Author(s):  
Gerrit John-Schuster ◽  
Katrin Hager ◽  
Thomas M. Conlon ◽  
Martin Irmler ◽  
Johannes Beckers ◽  
...  

Chronic obstructive pulmonary disease (COPD) is characterized by a progressive decline in lung function, caused by exposure to exogenous particles, mainly cigarette smoke (CS). COPD is initiated and perpetuated by an abnormal CS-induced inflammatory response of the lungs, involving both innate and adaptive immunity. Specifically, B cells organized in iBALT structures and macrophages accumulate in the lungs and contribute to CS-induced emphysema, but the mechanisms thereof remain unclear. Here, we demonstrate that B cell-deficient mice are significantly protected against CS-induced emphysema. Chronic CS exposure led to an increased size and number of iBALT structures, and increased lung compliance and mean linear chord length in wild-type (WT) but not in B cell-deficient mice. The increased accumulation of lung resident macrophages around iBALT and in emphysematous alveolar areas in CS-exposed WT mice coincided with upregulated MMP12 expression. In vitro coculture experiments using B cells and macrophages demonstrated that B cell-derived IL-10 drives macrophage activation and MMP12 upregulation, which could be inhibited by an anti-IL-10 antibody. In summary, B cell function in iBALT formation seems necessary for macrophage activation and tissue destruction in CS-induced emphysema and possibly provides a new target for therapeutic intervention in COPD.


2019 ◽  
Author(s):  
Sha Li ◽  
William A. Walters ◽  
Benoit Chassaing ◽  
Benyue Zhang ◽  
Qiaojuan Shi ◽  
...  

AbstractToll-like receptor (TLR) 5-deficient mice display aberrantly low levels of flagellin-specific antibodies (Flic-IgA) secreted into the gut, combined with excess bacterial flagellin in the gut, and together these attributes define microbiome dysbiosis (T5-dysbiosis). How TLR5 signaling deficiency results in T5-dysbiosis is unclear. Here, we address the role of B cells in T-dysbiosis. We observed that B cells do not express TLR5, and that B cell transplantation from TLR5−/− mouse donors into B-cell deficient mice resulted in a slight reduction in Flic-IgA levels compared to B-cells from WT donors. Bone marrow transplants from WT and TLR5−/− donors into recipients of both genotypes confirmed that TLR5 signaling by non-hematopoietic cells is required for T5-dysbiosis. We observed TLR5 deficiency was associated with an expanded population of IgA+ B cells. TLR5−/− mice tended to have higher richness for the IgA gene hypervariable region (CDR3 gene) variants. Transplantation of microbiomes from TLR5−/− and WT microbiomes donors into germfree mice resulted in a higher proportion of IgA-secreting B cells, and higher overall fecal IgA and anti-Flic IgA for TLR5−/− microbiome recipients. This observation indicated that the TLR5−/− mouse microbiome elicits an anti-flagellin antibody response that requires TLR5 signaling. Together these results indicate that TLR5 signaling on epithelial cells influences B cell populations and antibody repertoire.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3898-3898
Author(s):  
Alexandra Schulz ◽  
Yoon Jung Park ◽  
Rainer Claus ◽  
Hamid Kashkar ◽  
Jens Seeger ◽  
...  

Abstract Abstract 3898 Apoptosis resistance concomitant with aberrant upregulation of pro-survival pathways is a main pathogenic mechanism in development and maintenance of chronic lymphocytic leukemia (CLL). Our group recently identified TOSO to be significantly overexpressed in CLL compared to other B cell lymphomas or healthy B cells. Interestingly, TOSO is thought to exert pro-survival signaling, although it remains still enigmatic, how TOSO is regulated and why TOSO is expressed extremely heterogeneous on different B cells entities. Moreover, we previously detected elevated TOSO expression to be associated with progressive disease, including unmutated IgVH status of the B cell receptor (BCR). Since the BCR is a driving force in CLL, TOSO expression was investigated after BCR crosslinking and resulted in an increase of TOSO. To date, the TOSO promoter has not been described yet. Here, we firstly identified the TOSO proximal region to exert promoter activity. Moreover, in silico analysis and phylogenetic footprinting exhibited existence of transcription factor binding sites for NF-κB and BCL6. In luciferase reporter assays, including targeted mutagenesis, NF-κB was confirmed as novel inducer of TOSO expression. Whereas BCL6 binding, confirmed by ChIP and luciferase assays, was shown to exert repressing activity on the TOSO promoter. Although it can explained now how TOSO is regulated by the BCR, the reason for its distinct basal expression levels in normal B cells and other B cell malignancies still remained unclear. Our data illustrate for the first time that DNA hypomethylation of the TOSO promoter is a conspicuous characteristic in CLL patients compared to healthy donors. Indeed, the methylation status seems to play a major role, since the methylation level correlates with TOSO expression also in other B cell lymphomas. Moreover, it is indispensible to clarify the biologic significance of TOSO, particularly in the CLL relevant B cells. Therefore, we generated a B cell-specific knockout mouse model and identified impaired B cell development characterized by diminished B cell count. Gene expression analysis and flow cytometry revealed a decrease of the B-cell activating factor receptor (BAFF-R). BAFF-R ligation is known to promote B cell survival in particular via degradation of IκBα and translocation of NF-κB to the nucleus, thus activating the NF-κB pathway. Thus, BAFF-R decrease caused by TOSO depletion might lead to the detected reduction of B lymphocytes, which corresponds to the previous observations. Taken together, this work reveals a counteractive TOSO regulation by transcription activator NF-κB and transcription repressor BCL6 in a BCR-dependent manner in B cells. Moreover, we detected CLL-specific hypomethylation of the TOSO promoter, which is supposed to be causative for elevated TOSO level in CLL. Moreover, our results might reveal a new function of TOSO in pro-survival signaling and B cell homeostasis, supporting the anti-apoptotic feature of TOSO in B cells. Identifying the regulating mechanisms and biological function of the anti-apoptotic TOSO, is an essential step towards elucidation of the underlying molecular causes for the development of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3588-3588
Author(s):  
Yongwei Zheng ◽  
Yuhong Chen ◽  
Xiaona You ◽  
Mei Yu ◽  
Guoping Fu ◽  
...  

Abstract Small GTPases of the Ras subfamily regulate multiple signaling pathways and control numerous biological functions. Although the three major Ras members, Kras, Hras and Nras, are highly homologous, individual Ras gene can have distinct biological functions. Embryonic lethality of Kras-deficient mice precludes study of the biological role of Kras. Here, we generated and examined mice with hematopoietic- and B cell-specific deletion of Kras. In VavCreKrasfl/fl mice with hematopoietic deletion of Kras, the populations of bone marrow (BM) pre-, immature and mature B cells were reduced. The population of peripheral follicular (FO), marginal zone (MZ) and B1 mature B cells were also reduced in VavCreKrasfl/fl relative to control mice. In addition, BM chimeric mice with B cell-specific deficiency of Kras generated by transplantation of T- and B-null Rag1-deficient mice with a mixture of BM cells from VavCreKrasfl/fl mice and B cell-deficient μMT mice displayed a marked reduction of pre-, immature and mature B cells in the BM and mature B cells in the spleen. Thus, Kras deficiency intrinsically impairs early B cell development and late B cell maturation. Further, the effect of Kras deficiency on B-cell proliferation and survival was examined. The 3H-thymidine incorporation rate of Kras-deficient, relative to control, mature B cells in response to anti-IgM or anti-IgM plus IL-4 was markedly reduced. In addition, Kras-deficient B cells displayed a marked decrease of cell cycle entry and increase of cell apoptosis upon anti-IgM or anti-IgM plus IL-4 stimulation. Thus, Kras deficiency impairs BCR-induced B cell proliferation and survival. Lastly, the role of Kras in BCR signaling was studied. The level of total BCR-activated Ras (Ras-GTP) was largely reduced in Kras-deficient B cells. BCR-induced Ca2+ flux was comparable between Kras-deficient and control B cells. BCR-induced phosphorylation of Akt and IkBa was normal in mutant relative to control B cells. However, BCR-induced activation of ERK1/2 but not JNK or p38 was impaired in Kras-deficient relative to control B cells. Consistently, BCR-induced activation of Raf-1 and MEK1/2, the upstream activators of ERK1/2, was markedly reduced in mutant B cells. In addition, pre-BCR-induced ERK1/2 activation was impaired in Kras-deficient pre-B cells. Pre-BCR-induced activation of AP-1, the transcription factors downstream of ERK1/2, was decreased in mutant pre-B cells. Thus, Kras plays an important role in BCR- and pre-BCR-mediated activation of the ERK pathway in B cells. Taken together, these findings demonstrate that Kras is the Ras family member that critically regulates early B cell development and late B cell maturation through controlling the Raf-1/MEK/ERK pathway. Disclosures No relevant conflicts of interest to declare.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
C. N. Jondle ◽  
K. E. Johnson ◽  
C. Aurubin ◽  
P. Sylvester ◽  
G. Xin ◽  
...  

ABSTRACT Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling. IMPORTANCE Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. In this study, we show that IL-17A signaling promoted the establishment of chronic gammaherpesvirus infection following the mucosal route of infection, viral lytic replication, and reactivation from latency. Thus, our study unveils a novel proviral role of IL-17A signaling in gammaherpesvirus infection.


Blood ◽  
2021 ◽  
Author(s):  
Miguel A Galindo-Campos ◽  
Nura Lutfi ◽  
Sarah Bonnin ◽  
Carlos Martínez ◽  
Talia Velasco-Hernandez ◽  
...  

Dysregulation of the c-Myc oncogene occurs in a wide variety of haematologic malignancies and its overexpression has been linked with aggressive tumour progression. Here, we show that Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphomas. PARP-1 and PARP-2 catalyse the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA-strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphomas, while PARP-1-deficiency accelerates lymphomagenesis in the Em-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in pre-leukemic Em-Myc B cells resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1-deficiency induces a proinflammatory response, and an increase in regulatory T cells likely contributing to immune escape of B-cell lymphomas, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centred therapeutic strategies with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumours.


Author(s):  
Daniel E Eldridge ◽  
Charlie C Hsu

Murine norovirus (MNV), which can be used as a model system to study human noroviruses, can infect macrophages/monocytes, neutrophils, dendritic, intestinal epithelial, T and B cells, and is highly prevalent in laboratory mice. We previouslyshowed that MNV infection significantly reduces bone marrow B cell populations in a Stat1-dependent manner. We show here that while MNV-infected Stat1−/− mice have significant losses of bone marrow B cells, splenic B cells capable of mounting an antibody response to novel antigens retain the ability to expand. We also investigated whether increased granulopoiesis after MNV infection was causing B cell loss. We found that administration of anti-G-CSF antibody inhibits the pronounced bone marrow granulopoiesis induced by MNV infection of Stat1−/− mice, but this inhibition did not rescue bone marrow B cell losses. Therefore, MNV-infected Stat1−/− mice can still mount a robust humoral immune response despite decreased bone marrow B cells. This suggests that further investigation will be needed to identify other indirect factors or mechanisms that are responsible for the bone marrow B cell losses seen after MNV infection. In addition, this work contributes to our understanding of the potential physiologic effects of Stat1-related disruptions in research mouse colonies that may be endemically infected with MNV.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112126 ◽  
Author(s):  
Sara M. Reed ◽  
Jussara Hagen ◽  
Viviane P. Muniz ◽  
Timothy R. Rosean ◽  
Nick Borcherding ◽  
...  

2018 ◽  
Vol 116 (1) ◽  
pp. 211-216 ◽  
Author(s):  
Bochra Zidi ◽  
Christelle Vincent-Fabert ◽  
Laurent Pouyet ◽  
Marion Seillier ◽  
Amelle Vandevelde ◽  
...  

Bone marrow (BM) produces all blood and immune cells deriving from hematopoietic stem cells (HSCs). The decrease of immune cell production during aging is one of the features of immunosenescence. The impact of redox dysregulation in BM aging is still poorly understood. Here we use TP53INP1-deficient (KO) mice endowed with chronic oxidative stress to assess the influence of aging-associated redox alterations in BM homeostasis. We show that TP53INP1 deletion has no impact on aging-related accumulation of HSCs. In contrast, the aging-related contraction of the lymphoid compartment is mitigated in TP53INP1 KO mice. B cells that accumulate in old KO BM are differentiating cells that can mature into functional B cells. Importantly, this phenotype results from B cell-intrinsic events associated with defective redox control. Finally, we show that oxidative stress in aged TP53INP1-deficient mice maintains STAT5 expression and activation in early B cells, driving high Pax5 expression, which provides a molecular mechanism for maintenance of B cell development upon aging.


2018 ◽  
Vol 115 (48) ◽  
pp. 12212-12217 ◽  
Author(s):  
Katsumori Segawa ◽  
Yuichi Yanagihashi ◽  
Kyoko Yamada ◽  
Chigure Suzuki ◽  
Yasuo Uchiyama ◽  
...  

ATP11A and ATP11C, members of the P4-ATPases, are flippases that translocate phosphatidylserine (PtdSer) from the outer to inner leaflet of the plasma membrane. Using the W3 T lymphoma cell line, we found that Ca2+ ionophore-induced phospholipid scrambling caused prolonged PtdSer exposure in cells lacking both the ATP11A and ATP11C genes. ATP11C-null (ATP11C−/y) mutant mice exhibit severe B-cell deficiency. In wild-type mice, ATP11C was expressed at all B-cell developmental stages, while ATP11A was not expressed after pro−B-cell stages, indicating that ATP11C−/y early B-cell progenitors lacked plasma membrane flippases. The receptor kinases MerTK and Axl are known to be essential for the PtdSer-mediated engulfment of apoptotic cells by macrophages. MerTK−/− and Axl−/− double deficiency fully rescued the lymphopenia in the ATP11C−/y bone marrow. Many of the rescued ATP11C−/y pre-B and immature B cells exposed PtdSer, and these cells were engulfed alive by wild-type peritoneal macrophages, in a PtdSer-dependent manner. These results indicate that ATP11A and ATP11C in precursor B cells are essential for rapidly internalizing PtdSer from the cell surface to prevent the cells’ engulfment by macrophages.


Sign in / Sign up

Export Citation Format

Share Document