The Eukaryotic Translation Initiation Factor 4E (eIF4E) Has Oncogenic Functions and May Represent a New Therapeutic Target In Diffuse Large B Cell Lymphoma (DLBCL)

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3785-3785 ◽  
Author(s):  
Biljana Culjkovic ◽  
Tharu Fernando ◽  
ShaoNing Yang ◽  
Ari M. Melnick ◽  
Katherine LB Borden ◽  
...  

Abstract DLBCL features marked molecular heterogeneity. Gene overexpression due to genetic lesions or by other mechanisms activates powerful oncogenic pathways such as MYC, BCL6, BCL2 and MCL1; that are usually expressed concomitantly. Regardless the underlying mechanism, genes must first be transcribed into mRNA and then translated into proteins in the cytosol to exert their oncogenic functions. While most transcripts representing bulk mRNA are exported to the cytosol using the TAP/NXF1 complex, a specific subset of transcripts that contain a conserved sequence (4E-SE) are exported using the eIF4E/LRPPRC/XPO1 complex. EIF4E is frequently elevated in many malignances and exhibit oncogenic potential that arises from its critical roles in the nuclear export and cytosolic translation of oncogenic transcripts. EIF4E competitive inhibitors, such as ribavirin (RIB), as well as XPO1 inhibitors such as KPT-330, abrogate its pro-survival function by decreasing export and translation of target mRNAs. We hypothesized that eIF4E could have a role in the expression of oncogenic transcripts and proteins in DLBCL patients. In this case, eIF4E nuclear pore complex inhibitors would constitute a new therapeutic approach for this disease. We first analyzed the expression of eIF4E in DLBCLs by gene expression (RNA-seq and qPCR) and immunohistochemistry (IHC). Compared to centroblasts, primary DLBCL (n=69) and cell lines (n=25) showed significant overexpression of eIF4E (p<0.0001 and p=0.04, respectively). IHC analysis of eIF4E in 75 DLBCL indicates that 72% of cases overexpressed eIF4E in either the nucleus, cytosol or both. BCL6, the most frequently involved oncogene in DLBCL, contains a 4E-SE sequence in its transcript making it a potential eIF4E target. To determine whether in fact BCL6 was an eIF4E target, we analyzed BCL6 transcript cytosolic/nuclear ratio (C/N) in DLBCL cells engineered to overexpress or knockdown eIF4E. eIF4E overexpression and knocking-down caused 80% increase and 40% decrease in BCL6 C/N respectively, and this was accompanied by coincident BCL6 protein changes. To further characterize the nuclear eIF4E contribution to BCL6 expression we infected DLBCL cells with control vector (GFP), eIEF4EWT (overexpression), eIF4EW73A (mutant with no translation activity) and eIF4ES53A (mutant with no export activity). Only eIEF4EWT and eIF4EW73Awere able to increase and maintain BCL6 mRNA and protein levels, suggesting that BCL6 is, at least, an export target of eIF4E. To more directly test this, we performed eIF4E-immunoprecipitation followed by RNA-seq or qPCR (for validation) in DoHH2 and SUDHL6 cells. We found that BCL6, together with other 150 transcripts including the oncogenes MYC, MCL1, BCL2, BCLXL and OCD1, was significantly and differentially bound to eIF4E (vs. IgG control) in both cell lines. Additional functional experiments validated these oncogenes transcripts as eIF4E targets in DLBCL cells. In DLBCLs with cytosolic eIF4E overexpression, BCL6 and other oncogenes with complex 5’UTRs, such as MYC, BCL2 and MCL1, could be also behave as preferential translational targets. In order to test this, we isolated nine polysomal fractions from SUDHL6 cells treated with RIB 30 μM or vehicle for up to 96 h. We found that RIB treatment significantly decreased BCL6, MYC, BCL2 and MCL1 transcripts in polysomes. Non-complex transcripts such as actin were unaffected. This translated in decreased protein levels of BCL6, MYC, BCL2 and MCL1 in treated cells. Our data therefore suggested that BCL6 is a new eIF4E target transcript and RIB decreases BCL6 transcript and subsequently protein levels by inhibiting both mRNA nuclear export and preferential translation. To assess whether this could be capitalized therapeutically, we exposed a panel of 10 DLBCL cell lines for 48 h to eIF4E nuclear pore complex inhibitors RIB and KPT-330. We found that RIB and KPT-330 have potent anti-lymphoma activity in these cells. We then tested this concept in vivo in established OCI-Ly1 xenografts that were randomized into 2 groups of 7 mice each and treated with vehicle or RIB 80 mg/kg/day. After 10 days of treatment, RIB significantly decreased tumor proliferation (p=0.025) without inducing toxicity. In sum, this study showed that BCL6 is a new eIF4E target transcript and that eIF4E nuclear pore complex inhibitors could represent a new therapeutic approach for DLBCL pts, especially for those with expression of multiple oncogenes. Disclosures: No relevant conflicts of interest to declare.

Author(s):  
Giulio Sartori ◽  
Sara Napoli ◽  
Luciano Cascione ◽  
Elaine Yee Lin Chung ◽  
Valdemar Priebe ◽  
...  

Abstract Background Diffuse large B-cell lymphoma (DLBCL) comprises at least two main biologically distinct entities: germinal center B-cell (GCB) and activated B-cell (ABC) subtype. Albeit sharing common lesions, GCB and ABC DLBCL present subtype-specific oncogenic pathway perturbations. ABC DLBCL is typically characterized by a constitutively active NF-kB. However, the latter is seen in also 30% of GCB DLBCL. Another recurrent lesion in DLBCL is an 11q24.3 gain, associated with the overexpression of two ETS transcription factors, ETS1 and FLI1. Here, we showed that FLI1 is more expressed in GCB than ABC DLBCL and we characterized its transcriptional network. Methods Gene expression data were obtained from public datasets GSE98588, phs001444.v2.p1, GSE95013 and GSE10846. ChIP-Seq for FLI1 paired with transcriptome analysis (RNA-Seq) after FLI1 silencing (siRNAs) was performed. Sequencing was carried out using the NextSeq 500 (Illumina). Detection of peaks was done using HOMER (v2.6); differential expressed genes were identified using moderated t-test (limma R-package) and functionally annotated with g:Profiler. ChIP-Seq and RNA-Seq data from GCB DLBCL cell lines after FLI1 downregulation were integrated to identify putative direct targets of FLI1. Results Analysis of clinical DLBCL specimens showed that FLI1 gene was more frequently expressed at higher levels in GCB than in ABC DLBCL and its  protein levels were higher in GCB than in ABC DLBCL cell lines. Genes negatively regulated by FLI1 included tumor suppressor genes involved in negative regulation of cell cycle and hypoxia. Among positively regulated targets of FLI1, we found genes annotated for immune response, MYC targets, NF-κB and BCR signaling and NOTCH pathway genes. Of note, direct targets of FLI1 overlapped with genes regulated by ETS1, the other transcription factor gained at the 11q24.3 locus in DLBCL, suggesting a functional convergence within the ETS family. Positive targets of FLI1 included the NF-κB-associated ASB2 a putative essential gene for DLBCL cell survival. ASB2 gene downregulation was toxic in GCB DLBCL cell lines and induced NF-κB inhibition via downregulation of RelB and increased IκBα. Additionally, downregulation of FLI1, but not ASB2, caused reduction of NF-κB1 and RelA protein levels. Conclusions We conclude that FLI1 directly regulates a network of biologically crucial genes and processes in GCB DLBCL. FLI1 regulates both the classical NF-κB pathway at the transcriptional level, and the alternative NF-κB pathway, via ASB2. FLI1 and ASB2 inhibition represents a potential novel therapeutic approach for GCB DLBCL.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Danxia Zhu ◽  
Cheng Fang ◽  
Wenting He ◽  
Chen Wu ◽  
Xiaodong Li ◽  
...  

We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3′UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3′UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3781-3781
Author(s):  
Hai-Jun Zhou ◽  
Archie Tamayo ◽  
Lan Pham ◽  
Yen-Chiu Lin-Lee ◽  
Richard J. Ford

Abstract CD40 plays important roles in the proliferation, survival and differentiation of lymphocytes. Constitutively active CD40 recruits TRAFs and IKKs within the lipid rafts to form a signalosome that mediates pivotal downstream proliferation and survival mechanisms involving NF-kB. Recently, we have reported that nuclear localization of CD40, through its interaction with c-Rel, promotes growth, cell cycle progression and survival in large B cell lymphoma. Our studies have opened a new paradigm in the functional role of CD40 in non-Hodgkin lymphomas of B cell origin (NHL-B). However, the mechanism about how CD40 enters nuclear still remains elusive. In this study, we show that CD40 ligation enhances its nuclear accumulation with activation of c-Rel in both normal B-lymphocytes and B cell lymphoma cells with cell fractionation assay and con-focal microscopy. Over-expression of c-Rel in B cell lymphoma cells drives CD40 into cell nucleus. We hypothesize that the route CD40 enters nucleus may involve endosome-endoplasmic reticulum-nuclear pore complex. Indeed, further studies show CD40 co-localizes with endosome marker-EEA1 and endoplasmic reticulum marker-Sec61. Furthermore, our co-immunoprecipitation assay has demonstrated CD40 interacts with Sec61. CD40 also co-localizes and immuno-precipitates with nuclear pore complex (NPC) proteins-NUP62 in normal B-lymphocytes and B lymphoma cells, which suggests NPC proteins may facilitate the nuclear translocation of CD40 protein. Overall, our study suggests that translocation of CD40 into cell nucleus involves multiple pathways. Blocking nuclear localization may modulate the function of CD40 in lymphoma cells; which could provide a new-targeted therapeutic approach for lymphoma therapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 573-573
Author(s):  
Jessica Schmidt ◽  
Esteban Braggio ◽  
Marta Chesi ◽  
Jan Egan ◽  
Yuan Xiao Zhu ◽  
...  

Abstract Abstract 573 Using high throughput RNA interference screening on 6,722 druggable genes we previously identified XPO1/CRM1 as one of the 50 most vulnerable targets in Multiple Myeloma (MM)1. XPO1 knockdown proved lethal in MM cell lines, but had no effect on human embryonic kidney (293) cells or lung cancer (A549) cells, showing that XPO1 is a specific myeloma vulnerability, and that myeloma cell survival is dependent upon XPO1 expression. XPO1 encodes the protein exportin 1, a nuclear transport protein that exports tumor suppressor proteins from the nucleus, where they are active, to the cytoplasm, where they become inactive. We next analyzed XPO1 in MM via gene expression profiling (GEP). XPO1 expression is up-regulated as the disease progresses: patients with active MM have a higher level of XPO1 compared to normal plasma cells (p<0.04) and to patients with monoclonal gammopathy of undetermined significance or smoldering MM (p<0.0001). The highest levels were in human MM cell lines. TC classification revealed highest levels in t(11;14) and lowest levels in t(4;14) disease. Selective inhibitors of nuclear export (SINE) compounds have recently been developed that irreversibly inhibit XPO1/CRM1 and its nuclear export function. One such inhibitor, KPT-276, decreased the viability of all 12 MM cell lines tested in vitro, as shown by MTT assay. After 72 hours of drug treatment, a median IC50 value of approximately 175 nM (range 30–1000 nM) was observed. No synergy with other commonly used anti-MM therapeutics was observed in vitro. In contrast, the drug had little effect in 8 solid tumor cell lines with the exception of the B cell lymphoma line Ramos. KPT-276 was also consistently active in inducing apoptosis against MM primary patient samples. Using an IC80 dose of KPT-276, drug-treated samples had a reduced population of cells in S phase (8%) compared to cells treated with DMSO (21%). Using the vkappa*myc transgenic MM model, KPT-276 reduced monoclonal spikes (by a mean of 56%) in all mice treated orally with 150 mg/kg dose three times per week for 4 weeks. Furthermore, KPT-276 significantly reduced tumor growth in a xenograft MM1.S mouse model. GEP was performed in the presence or absence of drug in two different MM cell lines. Two genes of probable relevance, cell division cycle 25 homolog A (CDC25A) and Bromodomain-containing protein 4 (BRD4), were dysregulated by SINE treatment. Both are involved in cell cycle control and have been linked to MYC. RT-PCR and western blotting confirm that MYC, CDC25A and BRD4 are down-regulated, as soon as six hours, after treatment with KPT-276. KPT-276 has shown marked anticancer activities against B cell malignancies in vitro and is active and tolerated in Phase I canine studies. KPT-330, a close analog of KPT-276, is currently in Phase 1 studies in human with advanced hematological and solid tumors. Disclosures: Schmidt: Karyopharm: Research Funding. McCauley:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment. Stewart:Millenium: Consultancy, Honoraria, Research Funding; Onyx: Consultancy; Celgene: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 129-129 ◽  
Author(s):  
Fabrice Jardin ◽  
Anais Pujals ◽  
Laura Pelletier ◽  
Elodie Bohers ◽  
Vincent Camus ◽  
...  

Abstract Background and aim of the study Primary mediastinal B-cell lymphoma (PMBL) is an entity of aggressive B-cell lymphoma that is clinically and biologically distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We recently detected by Whole exome sequencing a recurrent point mutation in the XPO1 (exportin 1) gene (also referred to as chromosome region maintenance 1; CRM1), which resulted in the Glu571Lys (p.E571K) missense substitution in 2 refractory/relapsed PMBL (Dubois et al., ICML 2015; Mareschal et al. AACR 2015). XPO1 is a member of the Karyopherin-b superfamily of nuclear transport proteins. XPO1 mediates the nuclear export of numerous RNAs and cellular regulatory proteins, including tumor suppressor proteins. This mutation is in the hydrophobic groove of XPO1 that binds to the leucine-rich nuclear export signal (NES) of cargo proteins. In this study, we investigated the prevalence, specificity, and biological / clinical relevance of XPO1 mutations in PMBL. Patients and methods High-throughput targeted or Sanger sequencing of 117 PMBL patients and 3 PMBL cell lines were performed. PMBL cases were defined either molecularly by gene expression profile (mPMBL cohort) or by standard histological method (hPMBL cohort) and enrolled in various LYSA (LYmphoma Study Association) clinical trials. To assess the frequency and specificity of XPO1 mutations, cases of classical Hodgkin lymphoma (cHL) and primary mediastinal grey zone lymphoma (MGZL) were analysed. Cell experiments were performed to assess the impact of the E571 mutation on the activity of selective inhibitor of nuclear export (SINE) molecules. Results XPO1 mutations were present in 28/117 (24%) PMBL cases but were rare in cHL cases (1/19, 5%) and absent from MGZL cases (0/20). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in PMBL cases defined by gene expression profiling (n = 32), as compared to hPMBL cases (n = 85, 13%). No difference in age, International Prognostic Index (IPI) or bulky mass was observed between the PMBL patients harboring mutant and wild-type XPO1 in the overall cohort whereas a female predominance was noticed in the mPMBL cohort. Based on a median follow-up duration of 42 months, XPO1 mutant patients exhibited significantly decreased PFS (3y PFS = 74% [CI95% 55-100]) compared to wild-type patients (3y PFS = 94% [CI95% 83-100], p=0.049) in the mPMBL cohort. In 4/4 tested cases, the E571K variant was also detected in cell-free circulating plasmatic DNA, suggesting that the mutation can be used as a biomarker at the time of diagnosis and during follow-up. Importantly, the E571K variant was detected as a heterozygous mutation in MedB-1, a PMBL-derived cell line, whereas the two other PMBL cell lines tested, Karpas1106 and U-2940, did not display any variants in XPO1 exon 15. KPT-185, the SINE compound that blocks XPO1-dependent nuclear export, induced a dose-dependent decrease in cell proliferation and increased cell death in the PMBL cell lines harbouring wild type or mutated alleles. To test directly if XPO1 mutation from E571 to E571K alters XPO1 inhibition by SINE compounds, the mutated protein was tested in vitro. The E571XPO1 mutated allele was transiently transfected into osteosarcoma U2OS cells which stably express the fluorescently labelled XPO1 cargo REV. Cells were treated with the clinical SINE compound selinexor, which is currently in phase I/II clinical trials and nuclear localization of REV-GFP was analysed in red transfected cells. The results showed that the nuclear export of the mutated XPO1 protein was inhibited by selinexor similarly to the wild-type XPO1 protein (Figure 1). Conclusion Although the oncogenic properties of XPO1 mutations remain to be determined, their recurrent selection in PMBL strongly supports their involvement in the pathogenesis of this curable aggressive B-cell lymphoma. XPO1 mutations were primarily observed in young female patients who displayed a typical PMBL molecular signature. The E571K XPO1 mutation represents a novel hallmark of PMBL but does not seem to interfere with SINE activity. Rev-GFP (green fluorescent) expressing U2OS cells were transfected with wild type XPO1-RFP (red fluorescent protein), XPO1-C528S-RFP, XPO1-E571K-mCherry, and XPO1-E571G-mCherry. The cells were then treated with 1µM KPT-330 for 8 hours. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Disclosures Landesman: Karyopharm Therapeutics: Employment. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties. Argueta:Karyopharm Therapeutics: Employment. Milpied:Celgene: Honoraria, Research Funding.


1997 ◽  
Vol 7 (10) ◽  
pp. 767-775 ◽  
Author(s):  
Megan Neville ◽  
Francoise Stutz ◽  
Linda Lee ◽  
Laura I Davis ◽  
Michael Rosbash

2013 ◽  
Vol 24 (24) ◽  
pp. 3920-3938 ◽  
Author(s):  
Mario Niepel ◽  
Kelly R. Molloy ◽  
Rosemary Williams ◽  
Julia C. Farr ◽  
Anne C. Meinema ◽  
...  

The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance.


1999 ◽  
Vol 145 (4) ◽  
pp. 645-657 ◽  
Author(s):  
Ralph H. Kehlenbach ◽  
Achim Dickmanns ◽  
Angelika Kehlenbach ◽  
Tinglu Guan ◽  
Larry Gerace

We recently developed an assay in which nuclear export of the shuttling transcription factor NFAT (nuclear factor of activated T cells) can be reconstituted in permeabilized cells with the GTPase Ran and the nuclear export receptor CRM1. We have now used this assay to identify another export factor. After preincubation of permeabilized cells with a Ran mutant that cannot hydrolyze GTP (RanQ69L), cytosol supports NFAT export, but CRM1 and Ran alone do not. The RanQ69L preincubation leads to accumulation of CRM1 at the cytoplasmic periphery of the nuclear pore complex (NPC) in association with the p62 complex and Can/Nup214. RanGTP-dependent association of CRM1 with these nucleoporins was reconstituted in vitro. By biochemical fractionation and reconstitution, we showed that RanBP1 restores nuclear export after the RanQ69L preincubation. It also stimulates nuclear export in cells that have not been preincubated with RanQ69L. RanBP1 as well as Ran-binding domains of the cytoplasmic nucleoporin RanBP2 promote the release of CRM1 from the NPC. Taken together, our results indicate that RanGTP is important for the targeting of export complexes to the cytoplasmic side of the NPC and that RanBP1 and probably RanBP2 are involved in the dissociation of nuclear export complexes from the NPC in a terminal step of transport.


Blood ◽  
2004 ◽  
Vol 104 (7) ◽  
pp. 2035-2043 ◽  
Author(s):  
Stéphanie Plenchette ◽  
Séverine Cathelin ◽  
Cédric Rébé ◽  
Sophie Launay ◽  
Sylvain Ladoire ◽  
...  

Abstract The caspase inhibitor and RING finger-containing protein cellular inhibitor of apoptosis protein 1 (c-IAP1) has been shown to be involved in both apoptosis inhibition and signaling by members of the tumor necrosis factor (TNF) receptor family. The protein is regulated transcriptionally (eg, is a target for nuclear factor-κB [NF-κB]) and can be inhibited by mitochondrial proteins released in the cytoplasm upon apoptotic stimuli. The present study indicates that an additional level of regulation of c-IAP1 may be cell compartmentalization. The protein is present in the nucleus of undifferentiated U937 and THP1 monocytic cell lines. When these cells undergo differentiation under phorbol ester exposure, c-IAP1 translocates to the cytoplasmic side of the Golgi apparatus. This redistribution involves a nuclear export signal (NES)-mediated, leptomycin B-sensitive mechanism. Using site-directed mutagenesis, we localized the functional NES motif in the caspase recruitment domain (CARD) of c-IAP1. A nucleocytoplasmic redistribution of the protein was also observed in human monocytes as well as in tumor cells from epithelial origin when undergoing differentiation. c-IAP1 does not translocate from the nucleus of cells whose differentiation is blocked (ie, in cell lines and monocytes from transgenic mice overexpressing B-cell lymphoma 2 [Bcl-2] and in monocytes from patients with chronic myelomonocytic leukemia). Altogether, these observations associate c-IAP1 cellular location with cell differentiation, which opens new perspectives on the functions of the protein. (Blood. 2004;104:2035-2043)


1996 ◽  
Vol 7 (12) ◽  
pp. 1921-1937 ◽  
Author(s):  
R Murphy ◽  
J L Watkins ◽  
S R Wente

To identify and characterize novel factors required for nuclear transport, a genetic screen was conducted in the yeast Saccharomyces cerevisiae. Mutations that were lethal in combination with a null allele of the gene encoding the nucleoporin Nup100p were isolated using a colony-sectoring assay. Three complementation groups of gle (for GLFG lethal) mutants were identified. In this report, the characterization of GLE2 is detailed. GLE2 encodes a 40.5-kDa polypeptide with striking similarity to that of Schizosaccharomyces pombe RAE1. In indirect immunofluorescence and nuclear pore complex fractionation experiments, Gle2p was associated with nuclear pore complexes. Mutated alleles of GLE2 displayed blockage of polyadenylated RNA export; however, nuclear protein import was not apparently diminished. Immunofluorescence and thin-section electron microscopic analysis revealed that the nuclear pore complex and nuclear envelope structure was grossly perturbed in gle2 mutants. Because the clusters of herniated pore complexes appeared subsequent to the export block, the structural perturbations were likely indirect consequences of the export phenotype. Interestingly, a two-hybrid interaction was detected between Gle2p and Srp1p, the nuclear localization signal receptor, as well as Rip1p, a nuclear export signal-interacting protein. We propose that Gle2p has a novel role in mediating nuclear transport.


Sign in / Sign up

Export Citation Format

Share Document