Myeloid Leukemias Directly Suppress T Cell Proliferation Through STAT3 and Arginase Pathways

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3885-3885 ◽  
Author(s):  
Samantha Miner ◽  
Sawa Ito ◽  
Kazushi Tanimoto ◽  
Nancy F. Hensel ◽  
Fariba Chinian ◽  
...  

Abstract The immune-editing effect of myeloid leukemia has recently been reported in several studies. We previously demonstrated that the K562 leukemia-derived cell line suppresses T cell proliferation, which suggests that myeloid leukemia may function in a similar way to myeloid derived suppressor cells (MDSC). While the mechanism of suppression in leukemia is not fully understood, recent murine and human studies suggest that the STAT3 and arginase pathways play a key role in the immunosuppressive function of MDSC. We hypothesized that myeloid leukemia utilizes the MDSC STAT3 and arginase pathway to evade immune control, and block anti-leukemic immune responses. To evaluate the suppressive capacity of myeloid leukemia on T cell proliferation, we isolated CD34+ blasts and myeloid derived suppressor cells (MDSC: CD11b+CD14+) from blood of primary leukemia samples by FACS sorting (n=5). These cells were co-cultured with CFSE-labeled CD4+ T cells (n=9), previously isolated from healthy donor PBMCs using an automated cell separator (RoboSep). After stimulating with CD3/CD28 Dynabeads (Invitrogen, New York, USA) for 72 hours, proliferation was measured by CFSE dilution of the viable cell population. In three myeloid leukemias studied, CD4+ T cell proliferation was significantly suppressed in the presence of primary CD34 blasts and MDSC cells (p<0.001). Interestingly, CD34 blasts demonstrated a greater suppressive effect on T cells compared to MDSC cells for these samples (not statistically significant p=0.61). Next we repeated the proliferation assay using five leukemia cell lines: THP-1 and AML1 (derived from AML), K562 and CML1 (derived from CML), and the Daudi lymphoid-derived leukemia cell line. After staining with cell tracer dye and irradiating 100Gy, the cells were co-incubated with CFSE-labeled CD4+ T cells from healthy volunteers (n=6). We found that CD4+ T cell proliferation in the presence of the myeloid leukemia cell lines was significantly suppressed (mean proliferation 5.7±0.9% to 26.1±10.7%: p<0.0001 to 0.05) compared to lymphoid cell lines (mean proliferation 76.3±8.2%: p>0.05), consistent with the results obtained with the primary leukemia samples. To evaluate the impact of STAT3 and arginase on the immunosuppressive function of myeloid leukemia, the five cell lines were primed overnight with either arginase inhibitor (N(ω)-Hydroxy-nor-L-arginine; EMD Biosciences, Inc., California, USA) or two STAT3 inhibitors (STAT3 Inhibitor VI or Cucurbitacin I; EMD Millipore, Massachusetts, USA). Then, CD4+ T cells from healthy donors (n=3) were cultured with either (1) leukemia without any inhibitor (2) leukemia in the presence of inhibitor (3) leukemia primed with inhibitor. Priming leukemia with arginase inhibitor and STAT3 inhibitors almost completely abrogated their suppressive effect of T cell proliferation (p<0.001). We conclude that myeloid leukemia, like MDSC, directly immunosuppresses T cells, through STAT-3 and arginase. This finding may underlie the immune-editing of T cells by myeloid leukemia. Our results suggest that STAT3 inhibitors could be used to augment leukemia-targeted immunotherapy. Further investigation of T cell biology within the leukemia microenvironment is needed to further define immune editing mechanisms in myeloid leukemia. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1916-1916
Author(s):  
Tian-Hui Yang ◽  
Karen Clise-Dwyer ◽  
Gheath Alatrash ◽  
Kathryn Ruisaard ◽  
Shoudan Liang ◽  
...  

Abstract Abstract 1916 Proteinase 3 (P3), a serine protease constitutively expressed in primary granules and on the membrane of some resting granulocytes, is the target of T cell-mediated autoimmunity in Wegener's granulomatosis (WG) and of anti-leukemia immunity mediated by PR1 (VLQELNVTV)-specific cytotoxic T lymphocytes (PR1-CTL). We have shown that soluble P3 is increased by 5-fold in sera from acute myeloid leukemia (AML) patients compared to healthy controls, and soluble P3 mediates enzyme-independent inhibition of T-cell proliferation. Moreover, tumor-associated neutrophils (TANs) are associated with a poor prognosis in a number of cancers including renal cell carcinoma and lung cancer, and P3 is also over-expressed in a variety of AML and chronic myeloid leukemia (CML). Therefore, we hypothesized that membrane-bound P3 (mP3) may similarly regulate adaptive immunity by suppressing T-cell proliferation. To study this, T cells from healthy donors were labeled with the membrane dye CFSE and stimulated with anti-CD3 and anti-CD28 in the presence or absence of mP3-expressing PMNs for five days. The percentage of proliferating cells was determined by flow cytometry. Proliferation of autologous CD8+ and CD4+ T cells was significantly inhibited by 75% and 72%, respectively, when PMNs were co-incubated with lymphocytes at a ratio of 3:1, and by > 90% at 5:1. This cell contact-dependent inhibitory effect was limited to PMN since PBMCs added to lymphocytes in place of PMNs at 5:1 had no effect on T cell proliferation. To determine whether the inhibitory effect was specifically mediated by mP3, we FAC-sorted CD177+PMNs and CD177−PMNs to obtain highly purified (>98%) mP3+ and mP3− PMNs, respectively, because CD177 and mP3 are co-expressed on same subset of resting PMNs. At a ratio of 3:1 (CD177+PMNs or CD177−PMNs to lymphocytes), mP3+PMNs mediated > 75% growth inhibition of both CD8+ and CD4+ T cells compared to < 55% inhibition by mP3−PMNs (p<0.05). Furthermore, the inhibitory effect of mP3+PMNs on T cell proliferation was blocked (< 10% inhibition of proliferation) by anti-P3 but not by isotype control mAb. The inhibitory effect of mP3 was enzyme-independent because Elafin or α1-anti-trypsin did not affect inhibition by mP3+PMNs. In addition, mP3-mediated inhibition was fully reversible as T cells proliferated normally with anti-CD3/anti-CD28 stimulation after PMNs were removed from co-culture. Similarly, mP3+AML blasts inhibited autologous CD8+ and CD4+ T cell proliferation by 50% and 30%, respectively, at a 2:1 ratio of AML blasts: lymphocytes. Interestingly, bone marrow myeloid derived suppressor cells (MDSC) from leukemia patients express significantly higher mP3 (79.4±5.23% (mean±SEM, n=7)), compared to 22.4±11.55% mP3 on MDSC from healthy donors (p= 0.0007, n=3). Taken together, these data support an important new function of membrane-bound P3 on innate immune cells and leukemia in controlling adaptive T cell immunity. These findings suggest a novel mechanism whereby neutrophils could promote tumor growth in vivo through contact-mediated suppression of tumor-infiltrating lymphocytes by mP3 or by soluble P3 secreted by activated TANs in cancer and myeloid leukemia. Thus, targeting P3 with anti-P3 antibodies may be explored as a novel therapeutic strategy for leukemia and other cancers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1031-1031
Author(s):  
Tian-Hui Yang ◽  
Karen Clise-Dwyer ◽  
S Lisa ◽  
St. John ◽  
Gheath Alatrash ◽  
...  

Abstract Abstract 1031 Proteinase 3 (P3), a serine protease constitutively expressed in primary granules and on the membrane of some resting granulocytes, is the target of T cell-mediated autoimmunity in Wegener's granulomatosis (WG) and of anti-leukemia immunity mediated by PR1 (VLQELNVTV)-specific cytotoxic T lymphocytes (PR1-CTL). We have previously shown anti-CD3/CD28 induced proliferation of healthy donor T-cells to be significantly inhibited by peripheral blood polymorphonuclear neutrophils (PMNs) expressing membrane P3 (mP3) at a ratio of 3 PMNs to 1 PBMC. Our results indicate that mP3+ PMNs begin to exert inhibitory effects on T cell proliferation at a ratio of 2.2 mP3+ PMNs to 1 PBMC, a ratio greater than that seen in normal homeostatic conditions in peripheral blood. The inhibition was predominantly enzyme-independent and dose-dependent. Notably soluble P3 exerted similar effects on T cells as was seen with mP3. Additionally soluble P3 induced a G0 cell cycle arrest. Of significance, soluble P3 in acute myeloid leukemia (AML) patient serum can be up to 5-fold higher than that seen in healthy control serum. To confirm mP3 specificity, we FAC-sorted PMNs based on the mP3 co-expressed CD177 molecule to obtain highly purified (>98%) mP3+ and mP3− PMNs. Compared to activated PBMC alone, activated PBMC co-cultured at a ratio of 1:3 with mP3+ PMNs showed 58% and 57% inhibition of CD8+ and CD4+ T cells, respectively (CD8+ and CD4+: p< 0.003). PBMC co-cultured at that same ratio with mP3− PMNs showed less inhibition - only 29% and 26% inhibition of CD8+ and CD4+ T cells, respectively (CD8+: p<0.05; CD4+: p=ns). Inhibition of T cell proliferation by both mP3+PMNs and soluble P3 was blocked by anti-P3 mAbs but not by isotype-matched mAb. Furthermore, P3-mediated inhibition of T-cell proliferation is reversible since removal of PMNs or soluble P3 restored the proliferative capacity of the T cells. Because P3 is over-expressed in AML and chronic myeloid leukemia (CML), we hypothesized that mP3+ leukemia may suppress T-cell proliferation. Healthy donor T cell proliferation was studied with CFSE after stimulation with anti-CD3/CD28 mAbs in the presence or absence of mP3+ AML for five days. AML mediated a dose-dependent inhibition of T-cell proliferation contingent upon the level of mP3 expression (p<0.0001). Co-incubation of PBMC with AML displaying 91% mP3 positivity, reduced proliferation of CD8+ T cells to 29.6%, compared to 94.7% in the PBMC culture alone. This inhibition could be completely abrogated by addition of anti-P3 mAb, restoring the proliferation of CD8+ T cells to a level comparable to that seen in control. In contrast, no inhibition of CD8+ T cell proliferation was observed in co-cultures of T cells with AML in which only 6% of the AML cells expressed mP3. Thus, there is an inverse correlation between percent proliferation of T cells and the amount of mP3 on AML (R=0.4539, p<0.0001). In addition, AML expressing 91% mP3+ induced apoptosis of > 70% of the T cells at a ratio of 10 AML: 1 PBMC as assessed by uptake of aqua dye. The association between the amount of mP3 on AML and percent of apoptosis was significant (R=0.7852, p<0.0001), and apoptosis induced by mP3+AML appeared to be specific since T cells did not undergo apoptosis when anti-P3 mAb was added. The same correlation was not seen after PMNs from healthy donors (% mP3+: 62%±21.7, n=14) were co-incubated with PBMC. The percentage of cells undergoing apoptosis was less than 10%, regardless of the extent of PMN mP3 positivity. Of note, mP3 expression is significantly higher in bone marrow myeloid derived suppressor cells (MDSC) from leukemia patients compared to MDSC from healthy donors (79.4±5.23% (n=7), 22.4±11.55% (n=3), respectively; p= 0.0007). Because mP3 inhibited proliferation of T cells stimulated via the T cell receptor (TCR), i.e. anti-CD3/CD28, we compared effects of mP3 on ZAP70 and ERK signaling by phosphoflow cytometry. ZAP70 phosphorylation in CD8+ and CD4+ T cells was reduced by 78% and 80%, respectively, within 5 minutes of co-incubation with mP3+ PMNs compared with T cells stimulated with anti-CD3/CD28 mAbs alone, while ERK1/2 phosphorylation was completely blocked within 10 minutes, suggesting that P3-mediated inhibition of T cell proliferation involves downstream TCR signaling pathways. Taken together, these data support an important new function of membrane-bound P3 on PMN and leukemia in controlling adaptive T cell immunity. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2767-2767 ◽  
Author(s):  
Cesarina Giallongo ◽  
Nunziatina L Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Romano ◽  
...  

Abstract INTRODUCTION. Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in most cancer patients. Recently, we and another group demonstrated that MDSC play an important role of immune escape in chronic myeloid leukemia (CML) patients inducing T cell tolerance. The aim of this study was to investigate the effect of the tyrosine kinase inhibitors (TKI) therapy on MDSC and possible correlation with clinical response. METHODS. MDSCs were analyzed in peripheral blood of 20 healthy donors (HD) and 30 CML patients at diagnosis. MDSCs were also measured during TKI treatment (18 patients treated with imatinib and 10 patients with dasatinib). Granulocytic MDSCs (G-MDSCs) were identified as CD11b+CD33+CD14-HLADR- cells, while the monocytic MDSCs (M-MDSCs) as CD14+HLADR by cytofluorimetric analysis. Immuno-suppressive activity was tested through incubation of MDSCs with autologous CFSE-labeled T cells and stimulation with phytohaemagglutinin (PHA). Controls included a positive T cell proliferation control (T cells plus PHA) and a negative one (T cells only). After three days, T cell proliferation was analyzed by flow cytometry. Exosomes were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. RESULTS. G-MDSCs and M-MDSCs percentages in CML patients were greater than HD (respectively 82.5±9.6% vs 56.2±5.4% and 33.6±19% vs 5.9±4%, p<0.0001). Both isolated subpopulations showed expression of BCR/ABL and were able to inhibit T cells proliferation in comparison to positive control (from 48±7.6% to 25±5% for G-MDSC, p=0.0057 and 16.7±0.6% for M-MDSC, p<0.0001). No suppressive effect was observed in co-cultures with G-MDSC and M-MDSC obtained from HD. In addition, M-MDSC percentage correlated with BCR-ABLABL transcript levels in patients at diagnosis (r=0.5816, p=0.0006). Evaluating the effect of TKI therapy on MDSC levels, we found that both imatinib (IM) and dasatinib (DAS) induced a significant reduction of G-MDSC percentage at 6 months (from 82.5±9.6% to 55±17.3% after IM and 48.7±13% after DAS, p<0.0001) and 12 months (61.2±9.7% after IM and 33.4±14% after DAS, p<0.0001) of treatment. The levels of M-MDSCs significantly decreased only after DAS therapy (from 33.6±19% to 6.8±12.6% at 6 months, p=0.014 and 11.4±12.3% at 12 months, p=0.008); while there was a mild reduction after IM treatment (22.2±24.5% and 22.3±21.7% respectively at 6 and 12 months) although a great variability was observed among patients. Subsequently, correlation of MDSC reduction and clinical response to TKI therapy was investigated. We found that in DAS, but not in IM treated patients, a correlation between percentage of Major Molecular Response (MMR) and number of persistent M-MDSCs was found.. In fact, a significant difference was recorded by comparing M-MDSC levels in the MMR group (n=6) versus no MMR (n=4) at 6 or 12 months (p=0.0034). In addition, to evaluate if leukemic cells are able to expand MDSC by releasing soluble factors or exosomes, we incubated monocytes obtained from HD with sera or exosomes from CML patients at diagnosis or healthy subjects. M-MDSCs percentage significantly increased only in conditions with CML serum ( 29±13%; p=0.0006) or exosomes (8 ±2,8%; p=0.01) while no effect was observed on G-MDSC percentage. CONCLUSION: Therapy with TKI reduces the percentage of MDSCs and levels of the monocytic subset correlates with MMR in patients treated with dasatinib, suggesting their importance in clinical investigation as prognostic factor. Moreover, our data suggest the possible development in CML patients of a circuit primed by tumor cells that, through the release of soluble factors and exosomes, are able to expand M-MDSCs, creating an immunotolerant environment that results in T cell anergy and facilitates tumor growth. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Dingxi Zhou ◽  
Mariana Borsa ◽  
Daniel J. Puleston ◽  
Susanne Zellner ◽  
Jesusa Capera ◽  
...  

CD4+ T cells orchestrate both humoral and cytotoxic immune responses. While it is known that CD4+ T cell proliferation relies on autophagy, direct identification of the autophagosomal cargo involved is still missing. Here, we created a transgenic mouse model, which, for the first time, enables us to directly map the proteinaceous content of autophagosomes in any primary cell by LC3 proximity labelling. IL-7Rα, a cytokine receptor mostly found in naive and memory T cells, was reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy showed increased IL-7Rα surface expression, while no defect in internalisation was observed. Mechanistically, excessive surface IL-7Rα sequestrates the common gamma chain, impairing the IL-2R assembly and downstream signalling crucial for T cell proliferation. This study provides proof-of-principle that key autophagy substrates can be reliably identified with this model to help mechanistically unravel autophagy's contribution to healthy physiology and disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Lamsfus Calle ◽  
Rolf Fendel ◽  
Anurag Singh ◽  
Thomas L. Richie ◽  
Stephen L. Hoffman ◽  
...  

Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.


2009 ◽  
Vol 206 (10) ◽  
pp. 2111-2119 ◽  
Author(s):  
Ning Lu ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Kazuhiko Arima ◽  
Shino Hanabuchi ◽  
...  

Whether thymic stromal lymphopoietin (TSLP) directly induces potent human CD4+ T cell proliferation and Th2 differentiation is unknown. We report that resting and activated CD4+ T cells expressed high levels of IL-7 receptor a chain but very low levels of TSLP receptor (TSLPR) when compared with levels expressed in myeloid dendritic cells (mDCs). This was confirmed by immunohistology and flow cytometry analyses showing that only a subset of mDCs, with more activated phenotypes, expressed TSLPR in human tonsils in vivo. IL-7 induced strong STAT1, -3, and -5 activation and promoted the proliferation of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 monoclonal antibodies, whereas TSLP induced weak STAT5 activation, associated with marginally improved cell survival and proliferation, but failed to induce cell expansion and Th2 differentiation. The effect of TSLP on enhancing strong human T cell proliferation was observed only when sorted naive CD4+ T cells were cultured with mDCs at levels as low as 0.5%. TSLP could only induce naive CD4+ T cells to differentiate into Th2 cells in the presence of allogeneic mDCs. These results demonstrate that IL-7 and TSLP use different mechanisms to regulate human CD4+ T cell homeostasis.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


2013 ◽  
Vol 1 (S1) ◽  
Author(s):  
Steven K Grossenbacher ◽  
Arta M Monjazeb ◽  
Julia Tietze ◽  
Gail D Sckisel ◽  
Annie Mirsoian ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 986-986 ◽  
Author(s):  
Christina Krupka ◽  
Franziska Brauneck ◽  
Felix S Lichtenegger ◽  
Peter Kufer ◽  
Roman Kischel ◽  
...  

Abstract Bispecific T-cell engager (BiTE®) antibodies represent a promising tool for anti-leukemic immunotherapy. The CD19/CD3-bispecific antibody blinatumomab was shown to be active in refractory and relapse patients with B-precursor acute lymphoblastic leukemia (Topp et al, ASCO 2014). Transient, blinatumomab-mediated cytokine release syndrome has been linked to target cell numbers as this phenomenon is predominantly observed within the first treatment cycle. In our previous work, we demonstrated that the bispecific CD33/CD3 BiTE® antibody AMG 330 is able to induce activation and proliferation of residual autologous T-cells and effectively mediates lysis of primary acute myeloid leukemia (AML) cells (Krupka et al, Blood 2014; 123(3):356-65). We hypothesize that in AML patients with high initial leukocyte counts (WBC > 30.000/μl) a cytoreductive phase prior to AMG 330 therapy might be beneficial to reduce the incidence and severity of cytokine mediated toxicity. Ideally, the cytoreductive drug does not impair T-cell function or reduce target antigen expression level. In the current study, we evaluated the effect of cytarabine (20 µM), decitabine (5 µM), azacitidine (1 µM and 5 µM) and hydroxyurea (10 µM and 100 µM) on T-cell proliferation and function in close analogy to potential treatment algorithms for AML. Healthy donor (HD) T-cells were pre-incubated with the cytoreductive drugs for 72 hours. T-cells were CFSE-labeled and co-cultured with either HL60 or MV4-11 cells (effector cell:target (E:T) ratio 1:1) in the presence or absence of AMG 330 (5 ng/ml). After 3 days of co-culture, lysis of HL60 cells and T-cell proliferation was assessed by flow cytometry. Pretreatment of T-cells with cytarabine completely abrogated T-cell function (lysis of HL60 cells: untreated (UT): 96.9% vs 20 µM: 4.2%) and significantly impaired T-cell proliferation (UT: 31.2% vs 20 µM: 4.6%). These findings correlated to data using primary AML samples collected 3 and 6 days after discontinuation of cytarabine treatment. After a 3-day chemotherapy-free interval, we observed no relevant T-cell proliferation and lysis of AML cells upon the addition of AMG 330 to the ex-vivo long-term culture system (lysis of AML cells on day 12: 30%; fold change T-cell expansion 0.9). After a 6-day treatment-free interval, high T-cell proliferation and cytotoxicity against primary AML cells were observed (lysis of AML cells on day 12: 61%; fold change T-cell expansion: 3.1). In contrast to cytarabine, decitabine treatment only marginally impaired T-cell function. Similarly, pre-incubation with azacitidine did not convey a negative effect on T-cell function (lysis of HL60 cells: UT: 100% vs 1 µM: 94.9% vs 5µM: 86.8%; proliferation: UT: 90.9% vs 1 µM: 80% vs 5 µM: 66.8%). Pretreatment with hydroxyurea had the least impact on T-cell performance. It did not impair T-cell function (lysis of HL60 cells: UT: 100% vs 10 µM: 100% vs 100 µM: 100%) and proliferation compared to untreated controls (UT: 92.9% vs 100 µM 90.8% vs 10 µM 92.9%). As we have previously shown that the level of CD33 expression correlates to kinetics of AMG 330-mediated lysis (Krupka et.al, EHA 2014), we analyzed the effect of the cytoreductive agents on CD33 expression level in AML cell lines and primary AML cells. Five AML cell lines (HL60, MV4-11, PL21, OCI-AML3, KG1a) and a primary AML patient sample were cultured in the presence or absence of decitabine (5 µM and 50 µM), azacitidine (1 µM and 5 µM) or hydroxyurea (10 µM and 100 µM) for 72 hours. The change of CD33 expression level was evaluated by flow cytometry (median fluorescence intensity, MFI). No significant changes in CD33 expression level were observed after culture of AML cell lines and primary AML cells with decitabine or azacitidine. In contrast, hydroxyurea upregulated surface expression of CD33 on 2/5 cell lines (HL60 and PL21) in a dose dependent manner (HL 60 MFI Ratio: UT 134.9 vs 10 µM 171.3 vs 100 µM 210; PL21 MFI Ratio: UT 166.9 vs 10 µM 177.9 vs 100 µM 191.8). In summary, we could show that pretreatment with hydroxyurea did not impair T-cell function and proliferation. In addition, we observed an upregulation of CD33 expression on AML cell lines. As the BiTE® technology relies on T-cell function and target antigen expression level, sequential and combinatorial immuno-chemotherapeutic approaches need to address both issues. Our data support the use of hydroxyurea in AML patients that require cytoreduction prior to AMG 330 treatment. Disclosures Krupka: AMGEN Inc.: Research Funding. Kufer:AMGEN Research (Munich): Employment; AMGEN Inc.: Equity Ownership. Kischel:AMGEN Research (Munich): Employment; AMGEN Inc.: Equity Ownership. Zugmaier:AMGEN Inc.: Equity Ownership; AMGEN Research (Munich): Employment. Sinclair:AMGEN Inc.: Employment, Equity Ownership. Newhall:AMGEN Inc.: Employment, Equity Ownership. Frankel:AMGEN Inc.: Employment, Equity Ownership. Baeuerle:AMGEN Research (Munich): Employment; AMGEN Inc.: Equity Ownership. Riethmüller:AMGEN Inc.: Equity Ownership. Subklewe:AMGEN Inc.: Research Funding.


1990 ◽  
Vol 171 (6) ◽  
pp. 1965-1979 ◽  
Author(s):  
M Suthanthiran

Transmembrane signaling of normal human T cells was explored with mAbs directed at TCR, CD2, CD4, CD5, or CD8 antigens and highly purified CD4+ T cells and CD8+ T cells. Our experiments explicitly show that: (a) crosslinkage of TCR with the CD2 antigen, and not independent crosslinking of TCR and of CD2 antigen or crosslinking of either protein with the CD4 or CD8 antigen induces significant proliferation independent of co-stimulatory signals (e.g., accessory cells, recombinant lymphokines, or tumor promoter), (b) F(ab')2 fragments of mAb directed at the TCR and F(ab')2 anti-CD2, crosslinked with F(ab')2 fragments of rabbit anti-mouse IgG, promote the proliferation of highly purified T cells, (c) a prompt and sustained increase in intracellular free Ca2+ concentration results from crosslinkage of TCR with the CD2 antigen, (d) T cell proliferation induced by this novel approach is curtailed by EGTA and by direct or competitive inhibitors of PKC, (e) crosslinkage of TCR with the CD2 antigen results in the transcriptional activation and translation of the gene for IL-2 and in the expression of IL-2 receptor alpha (CD25), (f) anti-CD25 mAbs inhibit T cell proliferation initiated by crosslinkage of TCR with the CD2 antigen, and recombinant IL-2 restores the proliferative response. Our first demonstration that crosslinkage of TCR with the CD2 antigen induces proliferation of normal human CD4+ T cells and CD8+ T cells, in addition to revealing a novel activation mechanism utilizable by the two major subsets of T cells, suggest that the CD2 antigen might be targeted for the regulation of antigen-specific T cell immunity (e.g., organ transplantation).


Sign in / Sign up

Export Citation Format

Share Document