Genetics and Epigenetics of Fetal Hemoglobin Control

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-12-SCI-12
Author(s):  
Stuart H. Orkin

Abstract Expression of fetal hemoglobin (HbF, α2γ2) greatly ameliorates the severity of the major hemoglobin disorders, sickle cell disease (SCD), and the β-thalassemias. Efforts to reactivate HbF in adults with these disorders have relied on empirical observations or therapeutic modalities that are indirect. A major goal for the field is the development of targeted reactivation of HbF through relief of γ-globin gene silencing. The regulatory factors that participate in the switch from HbF to HbA in ontogeny and in γ-gene silencing in the adult have been elusive, therefore precluding mechanism-based reactivation of HbF. Recent findings, largely derived from genome-wide association studies (GWAS), have transformed the current understanding of globin switching. This presentation will review recent evidence supporting direct involvement of the zinc-finger repressor protein BCL11A in both developmental switching of globins and HbF silencing in the adult. These studies include the impact of naturally occurring genetic variation at the BCL11A locus on HbF levels, proof-of-principle experiments in genetically engineered mice suggesting that interference with BCL11A action alone may be sufficient to provide therapeutic elevation of HbF, and the nature of protein partners of BCL11A that may mediate some aspects of BCL11A function. Recent findings on the manner in which genetic variation within the BCL11A locus influences BCL11A expression provide special insight into quantitative aspects of HbF regulation and raise the possibility of new strategies to cripple BCL11A. The opportunities and challenges for the development of mechanism-based reactivation of HbF will be discussed in the context of ongoing efforts to exploit small molecule and genetic approaches. The tools are in hand to translate an improved understanding of globin gene regulation for the benefit of patients with the major hemoglobin disorders. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5-5
Author(s):  
Jian Xu ◽  
Vijay G. Sankaran ◽  
Yuko Fujiwara ◽  
Stuart H. Orkin

Abstract Abstract 5 All vertebrates switch expression of globin chains during development. In humans b-like globins switch from embryonic to fetal to adult, whereas in the mouse a single switch from embryonic to adult occurs. The switch from human fetal (g) to adult (b) expression is especially critical in the b-hemoglobin disorders, such as sickle cell anemia and the b-thalassemias. Delay of the switch or reactivation of the fetal gene in the adult stage greatly ameliorates clinical severity. Despite intensive molecular studies of the human b-globin cluster over more than two decades, the proteins regulating the switch, and the mechanisms controlling the process, have been largely elusive. Recently, genome-wide association studies identified genetic variation at a chromosome 2 locus that correlates with the level of HbF in different populations. The most highly associated single nucleotide polymorphisms (SNPs) reside in an intron of the BCL11A gene, which encodes a zinc-finger repressor protein. Previously we showed that shRNA-mediated ex vivo knockdown of BCL11A in cultured human CD34-derived erythroid precursors leads to robust HbF expression, consistent with a role for BCL11A in maintaining g-genes in a silenced state in adult cells. To address in vivo roles of BCL11A either in development or in globin gene silencing in an intact individual, we have employed stringent genetic tests of function in mice that carry a complete human b-globin gene cluster as a yeast artificial chromosome transgene (b-locus mice). Knockout of BCL11A in mice leads to failure to silence the endogenous b-like embryonic genes in adult erythroid cells of the fetal liver (>2500-fold derepression). The ratio of human g to b globin RNA in the fetal liver of BCL11A knockout mice is inverted compared to controls, such that g constitutes >90% of the b-like human expression at embryonic day (E)14.5 and >75% at E18.5. These quantitatively striking findings indicate that BCL11A controls developmental silencing of g-globin gene expression. To address by formal genetics the contribution of BCL11A to g silencing in adult animals we have employed conditional inactivation of BCL11A through hematopoietic- and erythroid-specific Cre-alleles. These experiments reveal that BCL11A is also required in vivo for g-gene silencing in adults. We observed that human g-globin expression is persistently derepressed >2000-fold (as compared to littermate controls) in bone marrow erythroblasts of 15-20 week old b-locus mice upon erythroid-specific deletion of BCL11A. Taken together, these findings establish BCL11A as the first genetically validated transcriptional regulator of both developmental control of globin switching and silencing of g-globin expression in adults. The recognition of these roles for BCL11A now permits focused mechanistic studies of the switch. In human erythroid cells, BCL11A physically interacts with at least two corepressor complexes, Mi-2/NuRD and LSD1/CoREST, as well as the erythroid transcription factor GATA-1 and the HMG-box protein SOX6. Rather than binding to the promoters of the g- or b-globin genes as do these latter factors, BCL11A protein occupies the upstream locus control and g-d-intergenic regions of the b-globin cluster (as determined by high resolution ChIP-Chip analysis), suggesting that BCL11A mediates long-range interactions and/or reconfigures the locus during different stages. An in-depth mechanistic understanding of globin switching offers the prospect for design of target-based activation of HbF in adult erythroid cells of patients with hemoglobin disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 457-457
Author(s):  
Orapan Sripichai ◽  
Christine M. Kiefer ◽  
Y. Terry Lee ◽  
Emily Riehm Meier ◽  
Colleen Byrnes ◽  
...  

Abstract Abstract 457 Genetic association studies and gene regulation studies demonstrate that the transcription factor BCL11A is a regulator of fetal hemoglobin (HbF) expression in humans. Cytokine signal transduction also regulates fetal hemoglobin expression in cultured adult human erythroblasts. To further explore the potential for BCL11A in the cytokine-mediated induction of HbF during adult erythropoiesis, transcript and protein expression levels of BCL11A were measured during erythroblast differentiation. BCL11A expression was detected at all stages of erythroid differentiation with the highest level expression in proerythroblasts during the first week in culture under both low-HbF (%HbF ≤3) and high-HbF (%HbF ≥30) culture conditions. Despite a reduction in BCL11A mRNA expression, Western analyses failed to demonstrate reduced levels of BCL11A nuclear protein expression at the proerythroblast stage of differentiation. However, BCL11A protein expression in the high-HbF producing cells was reduced relative to the low-HbF cells during the later period of culture as the cells underwent terminal differentiation. During this later culture period, hemoglobinization occurred, and cells grown in the high-HbF condition revealed a pancellular distribution of HbF compared with a heterocellular distribution in the low-HbF culture condition. Chromatin immunoprecipitation further demonstrated that the addition of HbF-inducing cytokines caused a nearly complete loss of BCL11A chromatin occupancy within the beta-globin locus under the high-HbF culture condition. Specifically, the loss of chromatin occupancy was detected in a region approximately 3 kb downstream of the (A)gamma-globin gene. Further examination of this genomic region demonstrated several BCL11A binding domains located on a cluster of non-coding, intronless RNAs previously named “BGL3” that possess an expression pattern in vivo that is largely restricted to the fetal-liver. In addition to increased and pancellular expression of fetal hemoglobin in the high-HbF erythroblasts, the loss of BCL11A chromatin occupancy in that region of the beta-globin locus was associated with increased expression of BGL3 mRNA (GenBank: AY034471) measured by RT-PCR. These findings demonstrate that defined combinations of cytokines regulate the expression level and chromatin occupancy of BCL11A in adult human erythroblasts as they undergo terminal differentiation. In addition to inheritance and ontogeny, the data also support a role for BCL11A in the regulation of HbF by cytokine signal transduction. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Sivan Yair ◽  
Graham Coop

1AbstractGiven the many loci uncovered by genome-wide association studies (GWAS), polygenic scores have become central to the drive for genomic medicine and have spread into various areas including evolutionary studies of adaptation. While promising, these scores are fraught with issues of portability across populations, due to the mis-estimation of effect sizes and missing causal loci across populations not represented in large-scale GWAS. The poor portability of polygenic scores at first seems at odds with the view that much of common genetic variation is shared among populations (Lewontin, 1972). Here we investigate one potential cause of this discrepancy: phenotypic stabilizing selection drives the turnover of genetic variation shared between populations at causal loci. Somewhat counter-intuitively, while stabilizing selection to the same optimum phenotype leads to lower phenotypic differentiation among populations, it increases genetic differentiation at GWAS loci and reduces the portability of polygenic scores constructed for unrepresented populations. We also find that stabilizing selection can lead to potentially misleading signals of the differentiation of average polygenic scores among populations. We extend our baseline model to investigate the impact of pleiotropy, gene-by-environment interactions, and directional selection on polygenic score predictions. Our work emphasizes stabilizing selection as a null evolutionary model to understand patterns of allele frequency differentiation and its impact on polygenic score portability and differentiation.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 513
Author(s):  
Grace H. Yang ◽  
Danielle A. Fontaine ◽  
Sukanya Lodh ◽  
Joseph T. Blumer ◽  
Avtar Roopra ◽  
...  

Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Sally K Hammad ◽  
Min Zi ◽  
Sukhpal Prehar ◽  
Robert Little ◽  
Ludwig Neyses ◽  
...  

Introduction: Hypertension is a major risk factor for cardiac hypertrophy and heart failure. Genome wide association studies have recently identified single nucleotide polymorphisms in ATP2B1 , the gene encoding the calcium extrusion pump, plasma membrane calcium ATPase (PMCA1), as having a strong association with hypertension risk. Hypothesis: PMCA1 plays an important role in regulation of blood pressure and protection against hypertension and cardiac hypertrophy. Aims: We aim to examine whether there is a functional link between PMCA1 and blood pressure regulation, and the development of hypertension. And to determine the impact this link may have on cardiac structure and function. Methods and Results: To study the role of PMCA1 we generated a global PMCA1 heterozygous knockout mouse (PMCA1 Ht ). PMCA1 Ht mice had 46% to 52% reduction in PMCA1 protein expression compared to the WT, in aorta, heart, kidney and brain. To study the mice under hypertensive stress conditions, 3 month old PMCA1 Ht and wild type (WT) mice were infused via minipump with angiotensin II (1mg/Kg/daily) or water as a control. Upon angiotensin treatment, PMCA1 Ht mice showed a significantly greater increase in systolic (62.24±3.05 mmHg) and diastolic pressure (52.68±4.67 mmHg), in comparison to the WT (33.37±2.91 mmHg and 23.94±4.56 mmHg, respectively), P<0.001, n=12. Moreover, PMCA1 Ht mice showed a significantly greater hypertrophic response as indicated by a greater heart weight to tibia length ratio, cardiomyocyte cell size (410±18.7 μm 2 ), compared to WT mice (340.4±9.8 μm 2 ), and increased expression of B-type natriuretic peptide (BNP), 2.36 ± 0.25 fold change, n =5-6, P< 0.01. Echocardiography showed no significant changes between PMCA1 Ht and WT mice, in heart rate, and in cardiac function, as indicated by fractional shortening and ejection fraction. In addition, PMCA1 Ht mice showed no sign of lung congestion as indicated by lung weight to body weight ratio. Conclusion: ATP2B1 deletion leads to increased blood pressure and cardiac hypertrophy. This provides functional evidence that PMCA1 is involved in blood pressure regulation and protects against the development of hypertension and cardiac hypertrophy.


Author(s):  
Fernanda M Bosada ◽  
Mathilde R Rivaud ◽  
Jae-Sun Uhm ◽  
Sander Verheule ◽  
Karel van Duijvenboden ◽  
...  

Rationale: Atrial Fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Genome-wide association studies have identified AF-associated common variants across 100+ genomic loci, but the mechanism underlying the impact of these variant loci on AF susceptibility in vivo has remained largely undefined. One such variant region, highly associated with AF, is found at 1q24, close to PRRX1, encoding the Paired Related Homeobox 1 transcription factor. Objective: To identify the mechanistic link between the variant region at 1q24 and AF predisposition. Methods and Results: The mouse orthologue of the noncoding variant genomic region (R1A) at 1q24 was deleted using CRISPR genome editing. Among the genes sharing the topologically associated domain with the deleted R1A region (Kifap3, Prrx1, Fmo2, Prrc2c), only the broadly expressed gene Prrx1 was downregulated in mutants, and only in cardiomyocytes. Expression and epigenetic profiling revealed that a cardiomyocyte lineage-specific gene program (Mhrt, Myh6, Rbm20, Tnnt2, Ttn, Ckm) was upregulated in R1A-/- atrial cardiomyocytes, and that Mef2 binding motifs were significantly enriched at differentially accessible chromatin sites. Consistently, Prrx1 suppressed Mef2-activated enhancer activity in HL-1 cells. Mice heterozygous or homozygous for the R1A deletion were susceptible to atrial arrhythmia induction, had atrial conduction slowing and more irregular RR intervals. Isolated R1A-/- mouse left atrial cardiomyocytes showed lower action potential upstroke velocities and sodium current, as well as increased systolic and diastolic calcium concentrations compared to controls. Conclusions: The noncoding AF variant region at 1q24 modulates Prrx1 expression in cardiomyocytes. Cardiomyocyte-specific reduction of Prrx1 expression upon deletion of the noncoding region leads to a profound induction of a cardiac lineage-specific gene program and to propensity for AF. These data indicate that AF-associated variants in humans may exert AF predisposition through reduced PRRX1 expression in cardiomyocytes.


2018 ◽  
Vol 40 (1) ◽  
pp. 194-201
Author(s):  
Joseph L Sottnik ◽  
Vandana Mallaredy ◽  
Ana Chauca-Diaz ◽  
Carolyn Ritterson Lew ◽  
Charles Owens ◽  
...  

AbstractAmylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl−/−) mouse that recapitulates biochemical and histological features of GSDIII. Agl−/− mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl−/− mice had 19 differentially expressed genes compared with control mice. An ‘Agl Loss’ gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008819
Author(s):  
Héctor Climente-González ◽  
Christine Lonjou ◽  
Fabienne Lesueur ◽  
Dominique Stoppa-Lyonnet ◽  
Nadine Andrieu ◽  
...  

Genome-wide association studies (GWAS) explore the genetic causes of complex diseases. However, classical approaches ignore the biological context of the genetic variants and genes under study. To address this shortcoming, one can use biological networks, which model functional relationships, to search for functionally related susceptibility loci. Many such network methods exist, each arising from different mathematical frameworks, pre-processing steps, and assumptions about the network properties of the susceptibility mechanism. Unsurprisingly, this results in disparate solutions. To explore how to exploit these heterogeneous approaches, we selected six network methods and applied them to GENESIS, a nationwide French study on familial breast cancer. First, we verified that network methods recovered more interpretable results than a standard GWAS. We addressed the heterogeneity of their solutions by studying their overlap, computing what we called the consensus. The key gene in this consensus solution was COPS5, a gene related to multiple cancer hallmarks. Another issue we observed was that network methods were unstable, selecting very different genes on different subsamples of GENESIS. Therefore, we proposed a stable consensus solution formed by the 68 genes most consistently selected across multiple subsamples. This solution was also enriched in genes known to be associated with breast cancer susceptibility (BLM, CASP8, CASP10, DNAJC1, FGFR2, MRPS30, and SLC4A7, P-value = 3 × 10−4). The most connected gene was CUL3, a regulator of several genes linked to cancer progression. Lastly, we evaluated the biases of each method and the impact of their parameters on the outcome. In general, network methods preferred highly connected genes, even after random rewirings that stripped the connections of any biological meaning. In conclusion, we present the advantages of network-guided GWAS, characterize their shortcomings, and provide strategies to address them. To compute the consensus networks, implementations of all six methods are available at https://github.com/hclimente/gwas-tools.


Sign in / Sign up

Export Citation Format

Share Document