scholarly journals Sequence Level Analysis of Hodgkin Lymphoma Clonotypes Detected in Peripheral Blood Using a Next-Generation Sequencing Approach

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1610-1610
Author(s):  
Yasuhiro Oki ◽  
Sattva S. Neelapu ◽  
Michelle Fanale ◽  
Larry W. Kwak ◽  
Luis Fayad ◽  
...  

Abstract Background: Classical Hodgkin lymphoma (CHL) has been established as B-cell malignancy characterized by a clonal expansion of pathognomonic Reed Sternberg cells (Marafioti et al. Blood 2000). A previous report suggests that clonotypic B-cells may be present in the blood of patients with CHL; however, the relationship between these circulating clonotypic B-cells and CHL is unclear. We utilized the LymphoSIGHT™ method, a next-generation sequencing approach, to detect lymphoma-specific clonotypes in peripheral blood in patients with CHL at diagnosis or disease recurrence as well as in follow-up blood samples. This method has the sensitivity to detect one lymphoma cell per million leukocytes in peripheral blood, and has been applied to minimal residual disease (MRD) detection in multiple B-cell malignancies. We evaluated the extent of somatic hypermutation in the lymphoma clonotypes, and performed sequence and expression level analyses of the lymphoma clonotype repertoire. Methods: Frozen primary tumor biopsy samples were first analyzed for clonality at the immunoglobulin heavy chain (IGH) and kappa chain (IGK) loci using the LymphoSIGHT method. Rearranged immunoglobulin gene segments (IGH-VDJ, IGH-DJ and IGK) in the genomic DNA and/or RNA were amplified with locus-specific primer sets, sequenced, and analyzed using standardized algorithms for clonotype determination. Clonotypes with a frequency >5% in the B-cell repertoire of the tumor biopsy were considered to represent tumor clonotypes. IGH-VDJ clonotypes with a frequency >2% in DNA were deemed to be cancer-specific if the clonotype was not present in the RNA. Such clonotypes were then quantitated in serum and peripheral blood mononuclear cells (PBMC), and DNA sequence and/or RNA expression level analysis was performed. Results: A total of 17 CHL patients were analyzed. A high-frequency clonal rearrangement was identified for at least one receptor (IGH-VDJ, IGH-DJ and IGK) in 12 of 17 cases (71%). Lymphoma-specific clonotypes were detected in blood samples from 8 of 11 patients (73%). Notably, a lymphoma-specific clonotype was detected in the serum compartment in 8 of 9 cases (89%) tested (Figure 1A), while it was detected in PBMC only in 3 of 9 cases (33%) tested (Figure 1B). Follow-up samples obtained from three patients in remission were negative for the tumor-specific clonotype in both the serum and cellular compartments. We conducted sequence and expression level analysis of each IGH-VDJ clonal rearrangement. We calculated the number of somatic mutations in each lymphoma-specific clonotype compared to the germline sequence in the interrogated region. In the ten patients with IGH-VDJ clonal rearrangements, we observed a median of 14 somatic mutations (range 0 to 27). This confirms that HRS cells correspond in their developmental stage to germinal or post-germinal center B-cells. While IGH-VDJ clonotypes were observed frequently in DNA obtained at diagnosis, IGH-VDJ clonotypes were not detected in the RNA from the same sample. We evaluated the relationship between the presence of lymphoma-specific clonotypes in the cellular compartment at diagnosis and eventual progression. All three untreated patients that were positive at baseline in the cellular compartment experienced relapse or progression (at 3, 11 and 17 months). In contrast, zero of 5 patients without detectable lymphoma-specific clonotypes in their cellular compartment at baseline experienced relapse (follow up duration 23-45 months, log-rank test p=0.004). Conclusions: This is the first clinical assay that can be used to detect and monitor MRD in CHL. Lymphoma-specific sequences can be identified in serum in 80% of cases. Our preliminary analysis suggests that the presence of lymphoma-specific clonotypes in PBMCs may indicate high risk for recurrence. This study demonstrates proof-of-principle and underscores the promise of a new methodology to measure disease burden and provide prognostic information from a blood test in patients with CHL. Figure 1. Lymphoma clonotype levels in A) cell-free plasma and B) PBMC samples are shown for the different patients. Figure 1. Lymphoma clonotype levels in A) cell-free plasma and B) PBMC samples are shown for the different patients. Figure 2 Figure 2. Disclosures Klinger: Sequenta, Inc.: Employment, Equity Ownership. Carlton:Sequenta, Inc.: Employment, Equity Ownership. Kong:Sequenta, Inc.: Employment, Equity Ownership. Faham:Sequenta, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2666-2666
Author(s):  
Yasuhiro Oki ◽  
Malek Faham ◽  
Victoria Carlton ◽  
Sattva S. Neelapu ◽  
Anas Younes

Abstract Abstract 2666 Background: In patients with diffuse large B-cell lymphoma (DLBCL), circulating lymphoma cells in the bloodstream are rarely detected by conventional morphology or flow cytometry evaluation. We developed a high-throughput sequencing based platform, LymphoSIGHT, to detect evidence of lymphoid malignancies in peripheral blood samples, as this could potentially be used for detection of minimal residual disease after treatment. This sequencing method has a sensitivity to detect one lymphoma cell per million leukocytes in peripheral blood. We herein report the results of our pilot study assessing the ability of this method to detect the lymphoma clone in peripheral blood samples from 5 DLBCL patients at the time of diagnosis. Methods: This study has been approved by IRB and consent has been obtained from patients. Using universal primer sets, we amplified immunoglobulin heavy chain (IgH@) variable, diversity, and joining gene segments from genomic DNA in tumor biopsy and peripheral blood samples (plasma and peripheral blood mononuclear cell (PBMC) compartments) collected at initial diagnosis. Amplified products were sequenced to obtain >1 million reads (>10× sequencing coverage per IgH molecule), and were analyzed using standardized algorithms for clonotype determination. Tumor-specific clonotypes were identified for each patient based on their high-frequency within the B-cell repertoire in the lymph node biopsy sample. The presence of the tumor-specific clonotype was then quantitated in cell-free and PBMC compartments from the diagnostic blood sample. A quantitative and standardized measure of clone level among all leukocytes in the diagnostic sample was determined using internal reference DNA. Results: We detected a high-frequency IgH clonal rearrangement in all 5 lymph node biopsy samples. The lymphoma clonotype that was identified in the tumor biopsy was also detected in the plasma and/or PBMC compartment in all 5 patients at diagnosis. Specifically, the lymphoma clonotype was detected in the plasma compartment in 4 patients, while 3 patients demonstrated the presence of the lymphoma clonotype in the PBMC compartment (Table 1). We hypothesize that the positive lymphoma clone in the plasma is due to rapid proliferation and necrosis of the primary tumor, releasing the degraded component of lymphoma into the blood stream. However, in this small sample size, we did not observe an obvious correlation between the level of detection (PBMC or plasma) and clinical parameters (LDH, stage, size of tumor, tumor Ki67, cell-of-origin). All patients achieved complete response after initial treatment and four are being followed. We plan to analyze blood specimens while they are in remission. Conclusions: IgH clonal rearrangements were detected by sequencing in all tumor biopsy samples. Importantly, all peripheral blood samples showed signs of circulating lymphoma material in either the plasma or PBMC compartment at diagnosis. Analysis of diagnostic and post-therapy samples from additional DLBCL patients is ongoing. These data will determine whether the sequencing assay is a strong indicator for response to therapy and relapse monitoring. Disclosures: Faham: Sequenta, Inc.: Employment, Equity Ownership, Research Funding. Carlton:Sequenta, Inc.: Employment, Equity Ownership, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3500-3500 ◽  
Author(s):  
Vincent Ribrag ◽  
Silvia Damien ◽  
Mecide Gharibo ◽  
Mercede Gironella ◽  
Armando Santoro ◽  
...  

Abstract Background: CC-122 is a novel non-phthalimide analog of the IMiDs® immunomodulatory drugs (lenalidomide and pomalidomide) and a first in class PPMTM (Pleiotropic Pathway Modifier) compound with multiple biological activities including potent anti-proliferative activity against B-lineage cells (10-fold greater than lenalidomide), anti-angiogenic activity (100-fold greater than lenalidomide) and immunomodulatory effects (10-fold greater than lenalidomide). The molecular target of CC-122 is cereblon (CRBN), a substrate receptor of the Cullin ring E3 ubiquitin ligase complex (CRL4CRBN). CC-122 promotes ubiquitination of lymphoid transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) in a CRBN-dependent manner, leading to their subsequent degradation. Following establishment of 3mg once daily (QD) as the maximum tolerated dose (Blood 122:2905 2013), patients with advanced aggressive non-Hodgkin lymphoma (NHL), multiple myeloma (MM), and select solid tumors were enrolled in parallel expansion cohorts of up to 20 evaluable patients. CC-122 was dosed at 3 mg QD in 28-day cycles until disease progression. Results: As of May 1, 2014, 93 total patients were enrolled in the expansion phase of the study. The NHL cohort included 21 patients with diffuse large B-cell lymphoma (DLBCL) and 1 patient with mantle cell lymphoma, and twenty-four patients were enrolled in the MM cohort. Results in solid tumor cohorts will be reported separately. All patients were ECOG performance status 0-2, the median number of prior systemic therapies was 4 (NHL) and 6 (MM). The most common (> 20%) adverse events (AEs) (grades 1-4) included neutropenia (69.6%), anemia (52%), asthenia (50%), pyrexia (35%), diarrhea (30%), cough (30%), thrombocytopenia (28%), and constipation (22%). Grade 3/4 AEs occurring in more than one patient were neutropenia (52%), anemia (26%), febrile neutropenia (13%), and thrombocytopenia (7%). CC-122 dose reduction was required in 36.4% of patients with NHL and 63% of patients with MM, the majority of which was due to neutropenia and occurred during cycle 1 or 2. CC-122 systemic exposure in NHL and MM patients was generally comparable after administration of single and multiple doses. Peak concentrations were observed between 30 minutes and 2 hours (median Tmax concentration = 1.5 h). Four treated patients with DLBCL had objective responses; one patient with complete response (CR) and 3 with partial responses (PR). Responses were observed in patients with germinal center B cell (GCB), non-GCB and Myc/Bcl2 over-expressing DLBCL. Four treated patients with MM had PR, and two of these responders were progression free beyond 10 cycles. A single dose of CC-122 3mg resulted in decreased Aiolos protein expression at 1.5 and 5 hours compared with baseline in peripheral B cells (median 38% and 53%) and T cells (median 31% and 54%) in the combined NHL (n = 16) and MM (n = 19) cohorts. Decrease in expression of Aiolos protein from baseline was also observed in lymph node biopsies of patients with DLBCL. Furthermore, CC-122 treatment decreased CD19+ B cells (median = 57% of baseline), expanded CD4-/CD8+/CD45RA-/CD45RO+ cytotoxic memory T cells (median = 320% of baseline), and expanded CD4+/CD8-/CD45RA-/CD45RO+ helper memory T cells (median = 154% of baseline) in peripheral blood samples from patients with MM (n = 9) and NHL (n = 3-12) subjects. Additionally, ex vivo activation of T cells after a single dose of CC-122 compared with baseline, as measured by IL-2 production, increased by a median of 776% (NHL n = 3 and MM n = 7). Conclusions: CC-122 shows promising initial clinical and pharmacodynamic activity in heavily pretreated relapse/refractory NHL and MM patients. Biomarker analysis indicates that the 3 mg QD dose of CC-122 results in rapid CRBN target engagement and Aiolos degradation in the peripheral blood lymphocytes of patients with NHL and MM patients and in NHL tumor tissue. Exploration of an intermittent dosing to mitigate neutropenia-related dose reductions and interruptions is ongoing and clinical studies exploring drug combinations with CC-122 are underway. Disclosures Ribrag: Celgene Corp: Consultancy. Rasco:Celgene Corp: Membership on an entity's Board of Directors or advisory committees. Wei:Celgene Corp: Employment, Equity Ownership. James:Celgene Corp: Employment. Hagner:Celgene Corp: Employment, Equity Ownership. Gandhi:Celgene Corp: Employment, Equity Ownership. Chopra:Celgene Corp: Employment, Equity Ownership. DiMartino:Celgene Corp: Employment, Equity Ownership. Pourdehnad:Celgene Corp: Employment, Equity Ownership. Stoppa:Celgene Jansen: Honoraria.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3923-3923
Author(s):  
Franklin Fuh ◽  
Caroline Looney ◽  
Dongwei Li ◽  
Kirsten Achilles Poon ◽  
Randall Dere ◽  
...  

Abstract Abstract 3923 CD22 and CD79b are cell surface receptors whose expression is limited to B-cells. Both CD22 and CD79b are expressed on NHL and CLL patient B-cells, as well as on relapsed NHL B-cells (Dornan et al., 2009; Polson et al., 2010). In order to develop a target specific therapy for the treatment of CLL and NHL, we generated anti-CD22 and anti-CD79b antibody drug conjugates (ADCs) linked to an auristatin, a potent anti-mitotic drug that disrupts cellular mitosis through inhibition of tubulin polymerization. Preliminary efficacy data have shown that these ADCs have significant activity in preclinical xenograft models of NHL, while minimal activity was observed with the unconjugated antibody (AG Polson et al, 2010). To evaluate the cellular effects and characterize the mechanism of action (MOA) of these ADCs, we have examined the pharmacokinetics and the pharmacodynamic effects in non-human primates. Substantial B cell depletion was observed after administration of either anti-CD22-ADC or anti-CD79b-ADC to cynomolgus monkeys. By comparison, the extent and duration of B cell depletion was less substantial in animals dosed with unconjugated anti-CD22 or anti-CD79b antibodies. We evaluated several potential mechanisms for the depletion, including antibody opsonization, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and internalization of drug conjugates which leads to subsequent intracellular release of cytotoxic drug and cell death. Our data from in vitro anti-CD22 studies showed minimal to no ADCC or CDC activity, suggesting that these mechanisms play little to no role in vivo. Consistent with the expected MOA of ADCs, we observed depletion of proliferating splenic follicular germinal center B cells in cynomolgus monkeys following dosing with anti-CD22 ADC. Furthermore, in studies with either anti-CD22-ADC or anti-CD79b-ADC, preferential depletion of proliferating Ki67+ B lymphocytes (compared to Ki67- B lymphocytes) was observed in peripheral blood of ADC-dosed animals, and not in animals dosed with the unconjugated antibody or with vehicle control. This preferential depletion was observed on Days 8 and 15, but was not seen on Day 21 or at subsequent time points, which correlated with the expected serum clearance of the ADC. In contrast, we observed that administration of either ADC resulted in a dose-dependent decrease in circulating non-proliferating B cells one day after dosing. Taken together, these observations agree with the proposed mechanism of action of initial depletion of both proliferating and non-proliferating B cells via antibody-mediated opsonization at early time points after dosing (1-2 days) with subsequent preferential depletion of proliferating B lymphocytes mediated by the auristatin component of the anti-CD22 and anti-CD79b ADCs. These data support CD22 and CD79b ADCs as promising candidate therapeutics for the treatment of NHL and CLL, as both anti-CD22 and anti-CD79b drug conjugates are capable of targeting Ki-67+ (proliferating) B cells in lymphoid tissues and peripheral blood. In CLL, Ki-67+ cells in bone marrow have been hypothesized to represent pathogenic ‘stem’ cells, and our preliminary data indicate increased percentages of Ki-67+ B cells in the peripheral blood of CLL patients compared to normal healthy adults. As both anti-CD22 and anti-CD79b ADCs specifically deplete proliferating B cells, the development of these ADCs represents an effective way to target proliferating pathogenic B cells in NHL and CLL, and offers a more favorable risk-benefit profile than traditional chemotherapeutic agents. Disclosures: Fuh: Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Looney:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Li:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Poon:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Dere:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Ramakrishnan:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Polson:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Prabhu:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership. Williams:Genentech/Hoffmann-La Roche Inc.: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2992-2992
Author(s):  
Farzad Nooraie ◽  
J. Dianne Keen-Kim ◽  
Derek Denton Lyle ◽  
Shannon Dingivan ◽  
Austin Mauch ◽  
...  

Abstract Cytogenetic studies are useful tools which can provide diagnostic, prognostic and management information for mature B-cell neoplasms. Mature B-cells do not grow well in cytogenetic cultures. Therefore, detection, characterization and differentiation of scant mature B-cell neoplasms or minimal residual disease can be difficult in bone marrow or peripheral blood specimens. FISH provides more sensitive information than G-band chromosome analysis. However, in cases with low-level involvement of the marrow, abnormal FISH results may be missed or not reported when abnormalities do not exceed experimentally determined cut-off values. To increase the sensitivity of abnormal mature B-cell detection, we developed an enrichment method utilizing pan B-cell antibodies. This method separates mature B-cells from the remaining bone marrow and/or peripheral blood cells. We selected 59 bone marrow and peripheral blood specimens from patients referred for mature B-cell neoplasms (except for myeloma) for use in the validation. These specimens had 1% to 10% monoclonal mature B-cells detected by flow cytometry and were enriched using cell-separating technologies. Each specimen was divided into four equal portions, with three of four portions undergoing enrichment using different pan B-cell antibodies. The fourth portion was reserved for standard non-enriched testing and was used for comparison to results obtained in the enriched portions. A variety of corresponding FISH analyses were performed in each of the four portions, based upon the disease state. FISH results were obtained by two independent scoring technologists. Enrichment with B-cell antibodies improved detection of FISH abnormalities that may not have otherwise been observed in the patient specimens. 42% (25/59) of samples had abnormalities detected within the enriched portion that were not detected in the standard non-enriched portion. Of these, 64% (16/25) had a FISH abnormality that was a critical finding for the final diagnosis, prognosis and/or management of the patient. Enrichment also increased the sensitivity of FISH abnormality detection. 29% (17/59) of samples had abnormalities that were detected in both the enriched and non-enriched portions. However, detection was on average 15-fold more sensitive. The average detection rate of FISH abnormalities in the non-enriched portion was 3%, which is at or near the experimentally determined cut-off value for most FISH probes. In contrast, the average detection rate of FISH abnormalities in the enriched portion was 56%. In 5% (3/59) of cases, detection of FISH aberrations in enriched specimens helped to distinguish two separate neoplastic processes in the bone marrow. These results demonstrate the increased opportunity for detecting FISH aberrations in enriched versus non-enriched specimens. Mature B-cell enrichment and subsequent FISH testing in cases of scant mature B-cell neoplastic involvement of the bone marrow and/or peripheral blood is a novel and powerful cytogenetic technique. This technique enriches bone marrow and/or peripheral blood specimens for targeted abnormal cells and increases the number of those cells analyzed by FISH testing, thus allowing for a higher detection rate of genetic abnormalities. Disclosures Nooraie: Genoptix Inc., A Novartis Company: Employment, Equity Ownership. Keen-Kim:Genoptix Inc., A Novartis Company: Employment, Equity Ownership. Lyle:Genoptix Inc., A Novartis Company: Employment, Equity Ownership. Dingivan:Genoptix Inc., A Novartis Company: Employment, Equity Ownership. Mauch:Genoptix Inc., A Novartis Company: Employment, Equity Ownership. Lynes:Genoptix Inc., A Novartis Company: Employment. Castillo:Genoptix Inc., A Novartis Company: Employment. Kolker:Genoptix Inc., A Novartis Company: Employment. Cancino:Genoptix Inc., A Novartis Company: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 904-904 ◽  
Author(s):  
Michael Wang ◽  
Simon A. Rule ◽  
Peter Martin ◽  
Andre Goy ◽  
Rebecca Auer ◽  
...  

Abstract Abstract 904 Background Bruton's tyrosine kinase (BTK) is a central mediator of B-cell receptor (BCR) signaling which is essential for normal B-cell development. Ibrutinib is an orally administered inhibitor of BTK that induces apoptosis and inhibits cellular migration and adhesion in malignant B-cells. MCL is an aggressive subtype of NHL, and despite high response rates to initial therapy, patients often relapse with acquired chemotherapy resistance and short response durations to conventional therapy. Preliminary results in 51 evaluable patients from the Phase 2 PCYC-1104 study demonstrated ibrutinib could achieve rapid nodal responses (including complete responses) in relapsed and refractory MCL patients (Wang et al, ASH 2011). Treatment with ibrutinib was associated with a transient increase in peripheral lymphocyte count representing a compartmental shift of cells with the CD19+/CD5+ phenotype from nodal tissues to peripheral blood (Chang et al, ASH 2011). Reported here are interim results of an international study of single-agent ibrutinib in previously treated MCL. Methods Subjects with relapsed or refractory MCL who were either bortezomib-naïve or bortezomib-exposed (prior treatment with at least 2 cycles of bortezomib) were enrolled. Ibrutinib was administered orally at 560mg daily (in continuous 28-day cycles) until disease progression. Bortezomib-naive and bortezomib-exposed cohorts were evaluated separately. Tumor response was assessed every 2 cycles according to the revised International Working Group for NHL criteria. The primary endpoint of the study is overall response rate (ORR). Secondary endpoints include: duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. Subjects A total of 115 subjects (65 bortezomib-naïve and 50 bortezomib-exposed) were enrolled between February 15, 2011 and July 3, 2012. Of the 111 subjects treated, 109 subjects were evaluable for efficacy (received at least one dose of ibrutinib and underwent ≥ 1 tumor response assessment). Baseline characteristics include median age 68 years (40–84), median time since diagnosis 42 months, median number of prior treatments 3 (1–6), bulky disease (≥ 10 cm) 13%, Ann Arbor stage IV at screening 77.4%, prior stem cell transplant 9.6%, high risk by MIPI score at baseline assessment 48.7%, and refractory disease 44.3%. Results Safety data are available for 111 subjects. Treatment-emergent AEs occurring in ≥ 15% of subjects: diarrhea (35%), fatigue (32%), upper respiratory tract infections (23%), nausea (21%), rash (21%), dyspnea (20%), and oedema peripheral (15%). Grade 3 or higher AEs occurring in ≥ 5% of subjects were neutropenia (11%), anemia (5%), diarrhea (5%), dyspnea (5%), pneumonia (5%), and thrombocytopenia (5%). Grade 4 treatment-related AEs were neutropenia (5%), hyperuricaemia (2%), and pancytopenia (1%). One grade 5 AE, pneumonia, was thought to be treatment-related. In the efficacy evaluable subjects, the ORR (complete + partial responses) is reported in Table 1. The median time on treatment was 6.0 months (0.7-16.6 months); 53% of subjects remain on treatment. Median DOR, PFS and OS have not been reached: 9 month DOR 65%, 12 month estimation of PFS 53% and OS 67%. Responses to ibrutinib increase with longer time on study treatment. Time to PR ranged from 1.4 – 8.3 months (median 1.9) and CR ranged from 1.7 – 11.2 months (median 3.9). This is seen with longer follow-up on the initial 51 subjects reported at ASH 2011: median time on study treatment was 3.8 months and is now 11.3 months; ORR was 69% and is now 74.5%; CR rate was 16% and is now 35.3%. Conclusions Longer follow up demonstrates the durability of responses and confirms the unprecedented single agent activity of ibrutinib in relapsed or refractory MCL in terms of ORR. The treatment- emergent AEs were consistent with safety data previously reported. A pivotal study in relapsed and refractory MCL patients following bortezomib treatment has been initiated. Disclosures: Wang: Pharmacyclic: Research Funding. Off Label Use: Ibrutinib is a novel agent being studied in a clinical trial. Rule:Pharmacyclics: Research Funding. Martin:Pharmacyclics: Research Funding. Goy:Pharmacyclics: Research Funding. Auer:Pharmacyclics: Research Funding. Kahl:Pharmacyclics: Research Funding. Jurczak:Pharmacyclics: Research Funding. Advani:Pharmacyclics: Research Funding. McGreivy:pharmacyclics: Employment, Equity Ownership. Clow:Pharmacyclics: Employment, Equity Ownership. Stevens-Brogan:Pharmacyclics: Employment, Equity Ownership. Kunkel:Pharmacyclics: Employment, Equity Ownership. Blum:Pharmacyclics: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2774-2774
Author(s):  
Wolfgang Kern ◽  
Richard Schabath ◽  
Tamara Alpermann ◽  
Claudia Haferlach ◽  
Susanne Schnittger ◽  
...  

Abstract Background Flow cytometry (FC) is increasingly used in diagnostic work-up of bone marrow (BM) from patients with suspected or proven myelodysplastic syndrome (MDS). Data on FC in peripheral blood (PB) is scarce. Aims Evaluate the use of FC for PB in suspected or proven MDS by comparison to BM analyzed during follow-up. Methods PB of 157 patients (pts) with suspected MDS was analyzed by FC applying ELN criteria defined recently for diagnosis of MDS in BM (Westers et al., Leukemia 2012). For all pts during follow-up at least one BM sample was evaluable by morphology, cytogenetics, and FC in parallel to confirm or exclude MDS (according to WHO 2008 criteria). Pts were then grouped according to results obtained from BM analysis during follow-up time points into 1) proven MDS (n=96), 2) no MDS (n=32), and 3) MPN, MDS/MPN, or “MDS possible” (presence of dysplastic features by morphology but not sufficient to diagnose MDS) (n=29) (median time to MDS confirmation, 0.9 months, range, 0.1-53.0; median time to last BM assessment without confirmation of MDS; 0.8 months, range, 0.2-23.0). Results First, results of FC on PB were compared between pts with finally proven MDS (n=96) by BM vs. those with no MDS by BM as diagnosed during follow-up. All 34 pts with myeloid progenitor cells (MPC) by FC in PB had finally proven MDS. However, in addition 62/94 (66.0%) of those without MPC (p<0.0001) also had proven MDS. Thus, the presence of MPC in PB was at least strongly indicative of MDS while there were also cases with MDS without MPC in PB. Moreover, besides the presence of MPC in PB, 17 of these 34 cases in addition displayed an aberrant antigen expression on MPC. Focusing on granulocytes we first analyzed side-scatter (SSC) signals in granulocytes as ratio of mean SSC signals granulocytes/lymphocytes (G/L). While for BM samples a reduced SSC ratio G/L had been described which reflects hypogranulation, we indeed found similar data for PB with a significantly lower SSC ratio G/L in pts with proven MDS as compared to those without (mean±SD 5.7±1.1 vs. 6.3±1.0, p=0.015). More strict, a mean SSC ratio G/L of 3.9 was found to most specifically identify pts with MDS: all 6 cases with a ratio <3.9 had MDS. Regarding aberrant antigen expression in granulocytes, MDS was more frequently diagnosed among cases with vs. without the following features: aberrant CD11b/CD16 expression pattern (43/46 investigated, 93.5% vs. 53/82, 64.6%; p=0.0002), lack of CD10 expression (37/43, 86.0% vs. 59/85, 69.4%; p=0.052), CD56 expression (19/21, 90.5% vs. 77/107, 72.0%; p=0.098). Cumulating this data, ≥2 aberrantly expressed antigens on granulocytes were found indicative of MDS: 42/45 (93.3%) of pts with aberrant expression of ≥2 antigens had MDS while only 54/83 (65.1%) of those with 0 or 1 aberrantly expressed antigen had finally proven MDS (p=0.0003). Regarding aberrant antigen expression in monocytes, pts with the following features more frequently had MDS as compared to those without: reduced expression of HLA-DR, CD13, CD11b, or CD15, aberrant expression of CD2 or CD34 (as single makers all n.s.). However, cumulating this data also resulted in a significant relation to a diagnosis of MDS during follow-up: 31/36 (86.1%) of pts with aberrant expression of ≥2 antigens on monocytes were diagnosed MDS vs. 65/92 (70.7%) of those without (p=0.052). Integrating the data for the different cell compartments, pts were separated according to the presence of the following 4 criteria: 1) presence of MPC in PB by FC, 2) aberrant expression of ≥1 antigen in MPC in PB, 3) aberrant expression of ≥2 antigens in granulocytes in PB, and 4) aberrant expression of ≥2 antigens in monocytes in PB: 68/76 (89.5%) of pts with ≥1 of these criteria had MDS, which was the case in 28/52 (53.8%) of cases fulfilling none of these criteria (p<0.0001). Strengthening the selection to presence of ≥2 of the criteria, all such 36 cases had MDS which was true for 60/92 (65.2%) of those with ≤1 criterion (p<0.0001). Applying these criteria to the set of remaining 29 pts with MPN, MDS/MPN, or possible MDS, 17 (58.6%) of them fulfilled ≥1 criterion which was true for 8/32 (25.0%) of pts not diagnosed MDS (p=0.010). Conclusions FC reveals MDS-related findings in PB samples using a specific panel targeting 10 antigens and may be used to identify pts with a high probability of MDS. Further studies with direct comparison of PB and BM should clarify the role of PB analysis by FC in the diagnostic work-up of pts with suspected MDS. Disclosures: Kern: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schabath:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1708-1708 ◽  
Author(s):  
Ajay K. Gopal ◽  
Brad S. Kahl ◽  
Sven de Vos ◽  
Nina D. Wagner-Johnston ◽  
Stephen J. Schuster ◽  
...  

Abstract Introduction: Rituximab-alkylator combinations are the standard therapies for patients (pts) with iNHL, however, refractory disease nearly uniformly develops. Once iNHL becomes “double-refractory” to both rituximab + alkylating agents, there are limited options to induce durable remissions. PI3K-delta signaling is critical for activation, proliferation and survival of B cells, and is hyperactive in many B-cell malignancies. Idelalisib, a selective oral inhibitor of PI3Kd, demonstrated considerable clinical activity in double-refractory iNHL (Gopal NEJM 2014). FDA granted accelerated approval for Idelalisib (Zydelig®) in patients who have received at least two prior systemic therapies with relapsed FL or SLL. Based on these encouraging initial results, we now describe long-term follow up, safety, and remission durations of this double-refractory iNHL population treated with idelalisib. Methods: Eligible iNHL pts included those with measurable disease refractory to both rituximab and an alkylating agent. Refractory was defined as lack of response to, or progression of lymphoma within 6 months of completion of index therapy, confirmed by imaging. Idelalisib 150 mg PO BID was administered continuously until disease progression or intolerance. Responses were evaluated by an independent review committee, using standard criteria (Cheson, 2007, and Owen 2013). The new data cutoff date for this analysis was June 2014, 20 months after the last patient enrolled. Results: Enrolled pts (N = 125) had a median age of 64 years and included follicular lymphoma (FL) n=72 (58%), small lymphocytic lymphoma (SLL) n=28 (22%), marginal zone lymphoma (MZL) n=15 (12%) and lymphoplasmacytic lymphoma (LPL)/Waldenstrom's macroglobulinemia (WM) n=10 (8%). The median number of prior therapies was 4 [range 2-12], including bendamustine/rituximab (BR) (n=60) and rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP) (n=56) and autologous transplant (n=14). 81 pts (65%) had prior bendamustine, of which 61/81 (75%) were refractory. 112 pts (90%) were refractory to their last regimen, and 99 pts (79%) were refractory to ≥2 regimens. 38 pts (30%) had elevated LDH, and 33 pts (26%) had bulky disease >7 cm. The median time to progression from last prior therapy was 3.9 months. With a median exposure of 11.1 months (range 0.7 to 35.4), the overall response rate (ORR) is 56% (95% CI = 46.8-64.9) with 70 responders, comprising 12 CRs (9.6%), 58 PRs (46.4%). The median time to response was 1.9 months (time of first evaluation) and time to CR was 4.5 months. There were 43 pts with stable disease (SD) (34.4%). 90% of pts experienced some decrease in tumor burden. ORR for iNHL subtypes is: FL (54%), SLL (61%), MZL (47%), and LPL/WM (70%). CR rate for iNHL subtypes is: FL (14%), SLL (4%), MZL (7%), and LPL/WM (0%). Among responders, median DOR is 13.9 (0.03-31.3) months. DOR for iNHL subtypes in months (Figure 1) is: FL 11.8, SLL 13.9, MZL 18.4, and LPL/WM (not yet reached). Median PFS for all pts is 11.0 months, in comparison to a median PFS of the last prior regimen of 3.9 months (p<.0001). The median PFS for individual subtypes in months was: FL 11.0, SLL11.1, MZL 6.6, and LPL/WM 22.2. The median overall survival of all patients was 30.8 months. The adverse events include (total%/≥ grade 3%) diarrhea/colitis (50/18), fatigue (30/2), nausea (31/2), cough (32/0), pyrexia (30/2), dyspnea (18/5), rash (14/2), pneumonia (14/11), and pneumonitis (4/3). Based on central laboratory measurements, Grade ≥3 ALT/AST elevations occurred in 18 pts (14%). Drug was temporarily held in these pts, and 11/15 pts (73%) were re-treated without recurrence of ALT/AST elevation. Overall, 30 pts (24%) have discontinued therapy due to adverse events. Conclusions: The prolonged administration of idelalisib was well tolerated, had an acceptable safety profile, and was highly effective in inducing and maintaining remissions in double-refractory iNHL population with an ORR of 56%, PFS of 11 months, and DOR of 13.9 months. The response rate and long term duration of responses in the small number of subjects with LPL/WM is very promising, and will be evaluated in larger trials of this disease. The observed disease control compared to prior regimens suggests the potential for prolonged clinical benefit in this challenging patient population with unmet medical need. Figure 1: Duration of Response by Disease Group. Figure 1:. Duration of Response by Disease Group. Disclosures Gopal: Gilead Sciences: Research Funding. Off Label Use: Zydelig is a kinase inhibitor indicated for the treatment of patients with: 1) Relapsed chronic lymphocytic leukemia (CLL), in combination with rituximab, in patients for whom rituximab alone would be considered appropriate therapy due to other co-morbidities; 2) Relapsed follicular B-cell non-Hodgkin lymphoma (FL) in patients who have received at least two prior systemic therapies; and 3) Relapsed small lymphocytic lymphoma (SLL) in patients who have received at least two prior systemic therapies.. Kahl:Gilead Sciences: Research Funding. de Vos:Gilead Sciences: Research Funding. Wagner-Johnston:Gilead Sciences: Research Funding. Schuster:Gilead Sciences: Research Funding. Jurczak:Gilead Sciences: Research Funding. Flinn:Gilead Sciences: Research Funding. Flowers:Gilead Sciences: Research Funding. Martin:Gilead Sciences: Research Funding. Viardot:Gilead Sciences: Research Funding. Blum:Gilead Sciences: Research Funding. Goy:Gilead Sciences: Research Funding. Davies:Gilead Sciences: Research Funding. Zinzani:Gilead Sciences: Research Funding. Dreyling:Gilead Sciences: Research Funding. Holes:Gilead Sciences: Employment, Equity Ownership. Sorensen:Gilead Sciences: Employment, Equity Ownership. Godfrey:Gilead Sciences: Employment, Equity Ownership. Salles:Gilead Sciences: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1741-1741 ◽  
Author(s):  
Craig H. Moskowitz ◽  
Andres Forero-Torres ◽  
Bijal D. Shah ◽  
Ranjana Advani ◽  
Paul Hamlin ◽  
...  

Abstract Background CD19, a B-cell specific marker, is expressed in the majority of patients with B-cell non-Hodgkin lymphoma (NHL). SGN-CD19A is a novel antibody-drug conjugate (ADC) composed of a humanized anti-CD19 monoclonal antibody conjugated to the microtubule-disrupting agent monomethyl auristatin F (MMAF) via a maleimidocaproyl linker. Methods This ongoing phase 1, open-label, dose-escalation study investigates the safety, tolerability, pharmacokinetics, and antitumor activity of SGN-CD19A in patients with relapsed or refractory B-cell NHL (NCT 01786135). Eligible patients are ≥12 years of age and must have a confirmed diagnosis of diffuse large B-cell lymphoma (DLBCL), including transformed follicular histology; mantle cell lymphoma (MCL); follicular lymphoma grade 3 (FL3); Burkitt lymphoma; or B-cell lymphoblastic lymphoma. Patients must be relapsed or refractory to at least 1 prior systemic regimen. Patients with DLBCL or FL3 must have also received intensive salvage therapy with or without autologous stem cell transplant (SCT), unless they refused or were deemed ineligible. A modified continual reassessment method is used for dose allocation and maximum tolerated dose (MTD) estimation. SGN-CD19A is administered IV on Day 1 of 21-day cycles (0.5–6 mg/kg). Response is assessed with CT and PET scans according to the Revised Response Criteria for Malignant Lymphoma (Cheson 2007). Results To date, 44 patients have been treated: 39 patients (89%) with DLBCL (including 10 with transformed DLBCL), 4 (9%) with MCL, and 1 (2%) with FL3. Median age was 65 years (range, 33–81). Patients had a median of 2 prior systemic therapies (range, 1–7), and 10 patients (23%) had autologous SCT. Twenty-six patients (59%) were refractory to their most recent prior therapy, and 18 (41%) were relapsed. Patients received a median of 3 cycles of treatment (range, 1–12) at doses from 0.5–6 mg/kg. Eleven patients (25%) remain on treatment, and 33 have discontinued treatment (18 due to progressive disease [PD], 5 for investigator decision, 5 for adverse events [AE], 4 because of patient decision/non-AE, and 1 for SCT). No dose-limiting toxicity (DLT) in Cycle 1 has been reported. Treatment-emergent AEs reported in ≥20% of patients were blurred vision (59%), dry eye (39%), fatigue (39%), constipation (32%), keratopathy (23%), and pyrexia (20%). Corneal exam findings consistent with superficial microcystic keratopathy were observed in 25 patients (57%) and were mostly Grade 1/2. Grade 3/4 corneal AEs were observed in 4 patients at the higher doses; the majority resolved or improved to Grade 1/2 at last follow-up. Corneal AEs were treated with ophthalmic steroids, and during the trial steroid eye drop prophylaxis was instituted with each dose of study drug. SGN-CD19A ADC plasma exposures were approximately dose-proportional. Accumulation was observed following multiple dose administrations, consistent with a mean terminal half-life of about 2 weeks, suggesting less frequent dosing might be possible. In the 43 efficacy-evaluable patients, the objective response rate (ORR) is 30% (95% CI [17, 46]), including 7 complete responses (CRs; 16%) and 6 partial responses (PRs; 14%). Of the 13 patients with an objective response, 8 are still on study with follow-up times of 0.1–31 weeks; 2 are no longer on study; and 3 had subsequent PD or death with response durations of 14, 19, and 31 weeks. Table Best Clinical Response by Disease Status Relative to Most Recent Therapy, n (%) Relapsed N=17 Refractory N=26 Total N=43 CR 5 (29) 2 (8) 7 (16) PR 4 (24) 2 (8) 6(14) SD 4 (24) 9 (35) 13 (30) PD 4 (24) 13 (50) 17 (40) ORR (CR + PR), (95% CI) 53 (28, 77) 15 (4, 35) 30 (17, 46) Conclusions To date, SGN-CD19A has shown evidence of clinical activity with an ORR of 30% and CR rate of 16%. Enrollment in the trial is ongoing to further refine optimal dose and schedule. SGN-CD19A is generally well-tolerated. No DLTs have been observed in tested dose levels. Observed ocular AEs are manageable with steroid eye drops and dose modifications. The high response rate (53%) in relapsed patients and low rate of bone marrow suppression or neuropathy suggest that SGN-CD19A could be incorporated into novel combination regimens in earlier lines of therapy. Disclosures Moskowitz: Merck: Research Funding; Genentech: Research Funding; Seattle Genetics, Inc.: Consultancy, Research Funding. Off Label Use: SGN-CD19A is an investigational agent being studied in patients with B-cell malignancies. SGN-CD19A is not approved for use. . Forero-Torres:Seattle Genetics, Inc.: Research Funding, Speakers Bureau. Shah:Pharmacyclics: Speakers Bureau; SWOG: Consultancy; Celgene: Consultancy, Speakers Bureau; NCCN: Consultancy; Seattle Genetics, Inc.: Research Funding; Janssen: Speakers Bureau. Advani:Janssen Pharmaceuticals: Research Funding; Genentech: Research Funding; Pharmacyclics: Research Funding; Celgene: Research Funding; Takeda International Pharmaceuticals Co.: Research Funding; Seattle Genetics, Inc.: Research Funding, Travel expenses Other. Hamlin:Seattle Genetics, Inc.: Consultancy, Research Funding. Kim:Bayer: Consultancy; Eli Lily: Consultancy; Seattle Genetics, Inc.: Consultancy, Research Funding. Kostic:Seattle Genetics, Inc.: Employment, Equity Ownership. Sandalic:Seattle Genetics, Inc.: Employment, Equity Ownership. Zhao:Seattle Genetics, Inc.: Employment, Equity Ownership. Fanale:Seattle Genetics, Inc.: Consultancy, Honoraria, Research Funding, Travel expenses Other.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4501-4501 ◽  
Author(s):  
Bindu Varghese ◽  
Jayanthi Menon ◽  
Luis Rodriguez ◽  
Lauric Haber ◽  
Kara Olson ◽  
...  

Abstract Bispecific antibodies that redirect effector T cells to kill tumor cells have shown considerable promise in both pre-clinical and clinical studies. However, these bispecific formats can have short half-lives necessitating constant infusion of the molecules into patients. We report here on a novel full-length human IgG CD20xCD3 bispecific antibody (REGN1979) that targets CD20 expressed on normal and malignant B cells and CD3 expressed on T cells in humans and cynomolgus monkeys. Our results demonstrate CD20-target cell-dependent activation and cytokine release by T cells, and efficient redirected T cell lysis of target tumor cells. Raji B cell lymphomas grown as tumors in NOD SCID IL2R gamma deficient (NSG) mice and co-implanted with human peripheral blood mononuclear (PBMC) cells were completely inhibited when treated at the time of implantation with a low dose (0.004 mg/kg; 2x/week) of REGN1979. As expected, T cells were required for this tumor inhibition, since treatment in the absence of human T cells was not effective. REGN1979 bispecific antibody also demonstrated potent activity against other tumor cells expressing CD20, as it significantly delayed CD20-transduced B16F10.9 tumor growth in immune-competent mice. Most importantly, REGN1979 induced dramatic tumor regression in large advanced (500-900 mm3) Raji tumors, associated with long-lasting tumor control. The tumor-infiltrating lymphocytes (TILs) in B cell lymphomas in these untreated NSG mice were found to express the inhibitory receptors Tim-3 and PD-1 and were the predominant fraction of T cells in the tumors and in the circulation. T cells in mice treated with REGN1979 showed decreased Tim-3 and PD-1 expression in the circulation accompanied by complete tumor regression. In further studies, REGN1979 (dosed at 0.4 mg/kg; 2x/week) was superior to rituximab therapy (dosed at 8 mg/kg; 5x/week) and comparable to the CD19xCD3 BiTE (dosed at 0.5 mg/kg; 5x/week) in suppressing established Raji tumors (200-400mm3). Pre-clinical studies in cynomolgus monkeys to assess activity of the bispecific antibody for depleting B cells in circulation and various lymphoid organs showed that a single injection of REGN1979 (0.1 mg/kg) was more potent at depleting CD20+ B cells in the mesenteric lymph nodes than a high dose of rituximab (30 mg/kg). In separate studies, REGN1979 was also found to have a long half-life (>14 days) in the circulation of monkeys following depletion of B cells. These studies show potent activity of a new class of fully human bispecific antibodies for treating tumors, and support clinical testing of REGN1979 in patients with CD20+ cancers. Figure 1 Figure 1. Disclosures Varghese: Regeneron Pharmaceuticals: Employment, Equity Ownership. Menon:Regeneron Pharmaceuticals: Employment, Equity Ownership. Rodriguez:Regeneron Pharmaceuticals: Employment, Equity Ownership. Haber:Regeneron Pharmaceuticals: Employment, Equity Ownership. Olson:Regeneron Pharmaceuticals: Employment, Equity Ownership. Duramad:Regeneron Pharmaceuticals: Employment, Equity Ownership. Oyejide:Regeneron Pharmaceuticals: Employment, Equity Ownership. Smith:Regeneron Pharmaceuticals: Employment, Equity Ownership. Thurston:Regeneron Pharmaceuticals: Employment, Equity Ownership. Kirshner:Regeneron Pharmaceuticals: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 758-758 ◽  
Author(s):  
Pieternella Lugtenburg ◽  
Rogier Mous ◽  
Michael Roost Clausen ◽  
Martine E.D. Chamuleau ◽  
Peter Johnson ◽  
...  

Introduction: CD20-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the treatment of B-cell non-Hodgkin lymphomas (B-NHL); however, a significant proportion of patients (pts) present with refractory disease or will experience relapse. GEN3013 (DuoBody®-CD3×CD20) is the first subcutaneously administered IgG1 bispecific antibody (bsAb) that targets the T-cell surface antigen CD3 and the B-cell surface antigen CD20, triggering T-cell-mediated killing of B cells. In vitro, GEN3013 efficiently activates and induces cytotoxic activity of CD4+ and CD8+ T cells in the presence of B cells (Hiemstra et al. Blood 2018), and results in long-lasting depletion of B cells in cynomolgus monkeys. Subcutaneous (SC) GEN3013 in cynomolgus monkeys resulted in lower plasma cytokine levels, and similar bioavailability and B-cell depletion, compared with intravenous administration. GEN3013 has higher potency in vitro than most other CD3×CD20 bsAbs in clinical development (Hiemstra et al. HemaSphere 2019). SC GEN3013 in pts with B-NHL is being evaluated in a first-in-human, Phase 1/2 trial (NCT03625037), which comprises a dose-escalation part and a dose-expansion part. Here we report preliminary dose-escalation data. Methods: Pts with CD20+ B-NHL with relapsed, progressive, or refractory disease following anti-CD20 mAb treatment, and ECOG PS 0-2 were included. During dose escalation, pts received SC GEN3013 flat dose in 28-day cycles (q1w: cycle 1-2; q2w: cycle 3-6; q4w thereafter) until disease progression or unacceptable toxicity. Risk of cytokine release syndrome (CRS) was mitigated with the use of a priming dose and premedication with corticosteroids, antihistamines, and antipyretics. Primary endpoints were adverse events (AEs) and dose-limiting toxicities (DLTs). Secondary endpoints included pharmacokinetics (PK), immunogenicity (anti-drug antibodies [ADA]), pharmacodynamics (PD) (cytokine measures; laboratory parameters), and anti-tumor activity (tumor size reduction; objective and best response). Results: At data cut-off (June 28, 2019), 18 pts were enrolled into the dose-escalation part of the trial, with safety data available for pts receiving doses starting at 4 µg. Most pts had diffuse large B-cell lymphoma (DLBCL; n=14) and were heavily pre-treated; 10 pts had received ≥3 prior lines of therapy (overall median [range]: 3 [1-11]). The median age was 58.5 years (range: 21-80), and 13 pts were male. At a median follow-up of 1.9 months, pts received a median of 5 doses (range: 1-14); treatment is ongoing in 6 pts. Twelve pts discontinued treatment due to progressive disease. Six pts died (2 during treatment, 4 during survival follow-up), all due to disease progression and unrelated to treatment. The most common (n≥5) treatment-emergent AEs were pyrexia (n=8), local injection-site reactions (n=7), diarrhea (n=5), fatigue (n=5), and increased aspartate aminotransferase (n=5). The most common Grade (G) 3/4 AEs were anemia (n=3) and neutropenia (n=3). Despite increasing GEN3013 doses, all CRS events were non-severe (initial observation: 3/8 pts, G1: n=1, G2: n=2; following modification of premedication plan [corticosteroids for 3 days]: 6/10 pts, G1: n=4, G2: n=2). Increases in peripheral cytokine (IL6, IL8, IL10, IFNγ, TNFα) concentrations after GEN3013 dosing correlated with clinical symptoms of CRS in most pts. No pts had tumor lysis syndrome or neurological symptoms. No DLTs were observed. GEN3013 PK profiles reflect SC dosing; Cmax occurred 2-4 days after dosing. No ADAs were detected. PD effects following GEN3013 dosing were observed at dose levels as low as 40 µg and included rapid, complete depletion of circulating B cells (if present after prior anti-CD20 therapy) and peripheral T-cell activation and expansion. The first evidence of clinical activity was observed at a dose level of 120 µg, with complete metabolic response observed in a pt with DLBCL. Conclusions: Subcutaneously administered GEN3013, a potent CD3×CD20 bsAb, shows good tolerability and early evidence of clinical activity at low dose levels in heavily pretreated pts with relapsed or refractory B-NHL. All CRS events were non-severe and did not lead to discontinuation. No DLTs were observed. Dose escalation is ongoing; updated data will be presented. Dose expansion will begin upon determining the recommended Phase 2 dose (RP2D) (NCT03625037). Disclosures Lugtenburg: Janssen Cilag: Honoraria; Roche: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria; Servier: Consultancy, Honoraria, Research Funding; Genmab: Consultancy, Honoraria; BMS: Consultancy; Takeda: Consultancy, Honoraria, Research Funding. Mous:Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Sandoz: Honoraria; Roche: Honoraria; Abbvie: Honoraria; Takeda: Honoraria, Research Funding; Janssen Cilag: Consultancy, Honoraria; MSD: Honoraria; Gilead: Consultancy, Honoraria, Research Funding. Clausen:Abbvie: Other: Travel grant to attend ASH 2019. Johnson:Boehringer Ingelheim: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Honoraria; Epizyme: Honoraria, Research Funding; Incyte: Honoraria; Takeda: Honoraria; Genmab: Honoraria; Bristol-Myers Squibb: Honoraria; Kite: Honoraria; Novartis: Honoraria. Rule:Janssen: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria, Research Funding; Astra-Zeneca: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Pharmacyclics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria; TG Therapeutics: Consultancy, Honoraria; Napp: Consultancy; Kite: Consultancy. Oliveri:Genmab: Employment, Equity Ownership. DeMarco:Genmab: Employment, Equity Ownership. Hiemstra:Genmab: Employment, Equity Ownership, Other: Warrants. Chen:Genmab: Employment. Azaryan:Genmab: Employment. Gupta:Genmab: Employment, Equity Ownership. Ahmadi:Genmab Inc: Employment, Other: stock and/or warrants. Hutchings:Incyte: Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; Genmab: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Research Funding; Pfizer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document