Azacitidine Treatment in High Risk Myelodysplastic Patients in Complete Haematological Remission Reverts Mesenchymal Stem Cells to a Normal Phenotype

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1904-1904 ◽  
Author(s):  
Antonella Poloni ◽  
Giulia Maurizi ◽  
Domenico Mattiucci ◽  
Benedetta Costantini ◽  
Marianna Mariani ◽  
...  

Abstract Introduction. Myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal hematopoietic stem cell (HSC) malignancies that are characterized by ineffective bone marrow hematopoiesis, peripheral blood cytopenias, and a substantial risk for progression to acute myeloid leukemia. Mesenchymal stem cells (MSCs) isolated from bone marrow of patients affected by myelodysplastic syndromes (MDS) play a critical role in myelodysplastic microenvironment showing altered structural epigenetic and functional features. Methods. In this work we evaluated the effect of azacitidine treatment on MSC-MDS. In particular, we analyzed MSC-MDS from 24 high-risk patients at diagnosis and after azacitidine treatment, studying their morphology, proliferative potential, cell cycle activity and their capacity to support haematopoiesis. Results. MDS-MSCs at diagnosis appeared larger and flattened, achieved confluence at a significantly lower rate than donors and displayed reduced proliferative capacity. In particular 40% of samples were unable to expand. This reduced proliferative capacity of MSC-MDS at diagnosis suggested changes in the cell cycle activity. Therefore we studied the gene expression profiles of 37 regulatory genes, observing CDKN2B up-regulation in MDS-MSCs (8 times higher than donors). Notably, after azacitidine treatment MDS-MSCs of patients who reached complete haematological remission (MDS-MSCs-CR) reverted to the typical BM-MSC morphology and recovered a proliferative potential similar to normal BM-MSC achieving confluence at a significantly higher rate. Molecular analysis on MDS-MSC-CR revealed a significant reduction in the expression level of CDKN2B showing correlation between cell cycle progression and expression level of this gene. Moreover, to study the long-term hematopoietic maintaining ability, MDS-MSCs at diagnosis were cultured with CD133+ cells, and they showed a decreased ability to support the growth of myeloid and erythroid progenitors. Conversely, MSC-MDS-CR showed an increased capacity to support haematopoiesis similar to healthy donors. Conclusion. We showed that MDS-MSCs at diagnosis were structurally and functionally altered while MSC-MDS-CR after azacitidine revert to a normal phenotype. It has been supposed that healthy MSCs adopt MDS-MSCs like molecular features when exposed to haematopoietic MDS cells. Our results may confirm these data suggesting that myelodysplastic cells can alter bone marrow microenvironment interacting with MSC and affecting their normal role and functionality. Disclosures No relevant conflicts of interest to declare.

2012 ◽  
Vol 317 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Zhi-Gang Zhao ◽  
Wen Xu ◽  
Hai-Peng Yu ◽  
Bing-Ling Fang ◽  
Shu-Hong Wu ◽  
...  

2016 ◽  
Vol 44 (1) ◽  
pp. 75-83.e4 ◽  
Author(s):  
Giulia Falconi ◽  
Emiliano Fabiani ◽  
Luana Fianchi ◽  
Marianna Criscuolo ◽  
Chiara Spertilli Raffaelli ◽  
...  

Tumor Biology ◽  
2014 ◽  
Vol 35 (5) ◽  
pp. 4307-4316 ◽  
Author(s):  
Chengming Fei ◽  
Youshan Zhao ◽  
Shucheng Gu ◽  
Juan Guo ◽  
Xi Zhang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Huafang Wang ◽  
Xiaohang Ye ◽  
Haowen Xiao ◽  
Ni Zhu ◽  
Cong Wei ◽  
...  

Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1916-1916
Author(s):  
Olga López Villar ◽  
Fermin M. Sánchez-Guijo ◽  
Juan Luis García ◽  
Jose Ramon González Porras ◽  
Eva Villarón ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are a group of clonal disorders of hematopoietic stem cell (HSC). The hematopoietic microenvironment plays a major role in the physiology of the hematopoietic system, and mesenchymal stem cells (MSC) are not only the progenitors but also the key regulators of this microenviroment. Recently, some data has been published showing that these MSC could be involved in the MDS pathophysiology. Moreover, the presence of cytogenetic aberrations on these cells is controversial. The aim of the study was to characterize bone marrow derived MSC from patients with MDS using different approaches: kinetic studies, immunophenotypic analysis and genetic changes by array-based comparative genomic hybridization (array-CGH). FISH was performed with the probe of 1q31 and Q-PCR was performed with the SYBR Green technique in order to confirm array-CGH results. Patients with untreated MDS were included in the study. Median age was 72 years (range: 54–89). Diagnosis of MDS was established according to the WHO classification as follows: 5q- syndrome (n=7), refractory anemia (n=2), refractory anemia with ringed sideroblasts (n=1) and refractory anemia with excess blasts type 2 (n=3). Standard cytogenetic and FISH studies on hematopoietic cells were performed at diagnosis according to standard methods. MSC from MDS were compared to those from 12 healthy donors. MSC were obtained by plating mononuclear cells from bone marrow, and cultured and expanded following standard procedures. According to the international consensus for MSC characterization, in the third passage MSC were harvested to perform phenotypical studies and cytogenetics. To perform Array-CGH a total of 3500 genomic targets were compounded from RP-11 libraries. The PCR products after purification were arrayed onto glass slides using a BioRobot. DNA was labelled, denaturalised and hybridizated. MSC from MDS achieved confluence at a slower rate than donor-MSC [23 days (range 12–90) vs 15 days (range 11–30) p<0,01]. Also some phenotypical markers showed lower expression on patients MSC: CD105 and CD104 (p<0,05%), compared to MSC from bone marrow donors. In all MDS cases analysed MSC showed DNA genomic changes. The most frequent aberrations were 1q31q32 region gains, present in 72% of cases, and 5q31 loss in 46% of patients. Gains in 1q31 were confirmed by FISH using the probe obtained from the BAC. Loss of 17p13 occurred in 3 cases (28%), and this may be relevant since p53 is included in that region, Q-PCR was subsequently performed confirming the loss of p53 in all these cases. The changes were not observed in hematopoietic cells analysed in order to exclude somatic changes. We conclude that MSC from MDS are functionally abnormal since they show a slower growing capacity and a lower expression of adhesion molecules. In the present study it is shown for the first time that MSC from MDS show several genomic aberrations when CGH arrays are used and the data have been confirmed by FISH and Q-PCR.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4573-4573
Author(s):  
Rui-Yu Wang ◽  
Yue-Xi Shi ◽  
Zhihong Zeng ◽  
Wendy D. Schober ◽  
Teresa J. McQueen ◽  
...  

Abstract Abstract 4573 Human mesenchymal stem cells (MSCs) derived from bone marrows are characterized by high proliferative potential and pluripotentiality to differentiate into multiple lineages such as osteo-, chondro-, and adipogenic cells. MSC express CD105, CD73 and CD90, but not CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. In this study, we observed that MSC derived from the bone marrow of four AML patients differentiated into B-cell lymphoblasts with NOD/SCID/IL-2Rg-/- engraftment potential. MSC cell lines were established by culturing adherent cells from newly diagnosed AML (n=4) age 20 to 74 years in alpha-DMEM medium supplement with 20% fetal bovine serum. Surface antigen phenotype analysis and G-banding karyotype analysis were performed in passage 2 to 4. FACS-sorted CD90 positive cells were then intravenously (I.V.) injected into NOD/SCID/IL-2Rg-/- (NOG) mice via tail vein (n=9) or into the bone marrow (n=3). Circulating cells were analyzed for CD19, CD33, CD34, and CD90 expression on day 36, 45, 60, 75 after injection of MSC. Results 1) G-banding showed normal karyotype in all MSC; 2) Injected MSC engrafted and differentiated in NOG mice. Surprisingly, CD19 positive cells were found in all samples starting on day 36 (table) and increased on day 60 and 75 (from d36: 6.9±3.5%, d45:0.7±0.1%, d60:2.6 ± 1.6% and d75: 9.3 ± 1.0%); 3) CD90 positive cells were found on day 45 (range from 0.07-3.96% and decreased to 0.1-0.5% on day 75). Low percentage of CD33 (day 45: 0.19-0.78% and day 60: 0.12-2.53%) and CD34 positive cells (day 45: 0.32-1.9% and day 60: 0.21-2.39%) were observed before day 60 and were undetectable by day 75. Table shows the percentages of CD19+ cells found in circulation in NOD/SCID/IL-2Rg-/- (NOG) mice after MSC I.V. or intra-bone marrow injection. (* Mice died after phlebotomy.) Conclusion Human MSC derived from AML bone marrows have the capacity to differentiate into CD19 positive B lymphocyte in NOG mice in vivo. It has previously been reported that AML can be propagated by a leukemic stem cell with lymphoid characteristics (Cancer Cell 2006, 10, 363-74). Data reported here suggest the possibility that AML-derived MSC give rise to lymphoid cells that engraft in NOG mice. This unexpected finding could shed light on the role of stroma cells in the pathogenesis and propagation of leukemias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5081-5081
Author(s):  
Ching-Tien Peng

Abstract 5081 Introduction Idiopathic severe aplastic anemia (SAA), characterized by failure of hematopoiesis, is rare and potentially life-threatening to children. However, the pathogenesis has not been completely understood, and insufficiency in the hematopoietic microenvironment can be an important factor. Mesenchymal stem cells (MSCs) play an important role in maintaining bone marrow microenvironment. Therefore, we aimed at the intrinsic defects of bone marrow MSCs derived from SAA children. Materials and Methods Bone marrow MSCs were obtained from 5 SAA children and 5 controls. The morphology, immunophenotyping, proliferative capacity and differentiation potential of MSCs from SAA children were determined and compared with those of MSCs from controls. Results In vitro, MSCs of SAA and control group shared a similar spindle-shaped morphology. Both revealed a consistent immunophenotypic profile which was negative for CD45, CD14 and CD34, and positive for CD105, CD73, and CD44. However, SAA MSCs had slower expansion rate and smaller cumulative population doubling from passage 4 to 6 (1.83± 1.21 vs 3.36± 0.87; p = 0.046), indicating lower proliferative capacity. Besides, only 3 of 5 cultures of SAA group retained the ability to continue expansion till 80%-90% confluent cell layer beyond passage 6, suggesting earlier senescence of SAA MSCs. After osteogenic induction, SAA MSCs showed lower alkaline phosphatase activity (1.46± 0.04 vs 2.27± 0.32; p = 0.013), less intense von Kossa staining and lower gene expression of core binding factora1 (0.0015± 0.0005 vs 0.0056± 0.0017; p = 0.013). Following adipogenic induction, SAA MSCs showed less intense Oil red O staining (0.86± 0.22 vs 1.73± 0.42; p = 0.013) and lower lipoproteinlipase expression (0.0105± 0.0074 vs 0.0527± 0.0254; p = 0.013).The results of real time-PCR analysis for the assessment of lineage-specific genes were consistent with the findings of histochemical stains, and both indicated that SAA MSCs had poor osteogenic and adipogenic potential. Conclusions In this study, we demonstrated that bone marrow MSCs from children with SAA had poor potential of proliferation and differentiation. These alterations in MSCs may contribute to the failure of hematopoiesis, and lead to the development of the disease. Further studies are needed to elucidate the relationship between MSCs and SAA. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document