The Histone Deacetylase Inhibitor Panobinostat (LBH-589) Exerts Anti-Leukaemic Activity in a MLL-Rearranged ALL Xenograft Mouse Model

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3709-3709
Author(s):  
Patricia Garrido Castro ◽  
Eddy HJ Van Roon ◽  
Sandra S Mimoso Pinhancos ◽  
Pauline Schneider ◽  
Mark JB Kerstjens ◽  
...  

Abstract BACKGROUND: Infant acute lymphoblastic leukaemia (ALL) is a rare but aggressive malignancy, mainly presenting with chromosomal rearrangements of the MLL (Mixed Lineage Leukaemia) gene locus on 11q23. The majority of these MLL rearrangements involve the translocation partners AF4, AF9 or ENL within the translocation events t(4;11)(q21;q23), t(9;11)(p22;q23) and t(11;19)(q23;p13.3), respectively. The resulting fusion genes, MLL-AF4, MLL-AF9 and MLL-ENL, code for chimeric transcription regulators acting as strong oncogenic drivers, rewriting the epigenetic landscape of the cell and profoundly altering gene expression. Consequently, these cytogenetic lesions define an ALL subtype both biologically and clinically distinct from other subtypes, strongly associated with drug resistance to first-line chemotherapeutics, high relapse rates and a dismal prognosis. Hence, novel treatment strategies which specifically target the underlying molecular pathobiology of this disease are urgently needed. AIMS: Previously, our group performed extensive patient cohort profiling on both transcript and epigenetic level in order to understand the molecular events underlying the disease, and identified histone deacetylase inhibitors (HDACi) as effective therapeutic drugs both in silico and in vitro. The aim of the current study was to elucidate potential molecular mechanisms by which the candidate HDACi Panobinostat is able to target MLL-rearranged ALL (MLLr-ALL) cells, and to confirm its efficacy in vivo using pre-clinical MLLr-ALL xenograft mouse models able to recapitulate the disease phenotype observed in humans. METHODS: Immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were injected intrafemurally with a MLL-AF4+ B-ALL cell line (SEM) genetically modified to express a luciferase reporter. These mice were subsequently either treated with low-dose (1mg/kg) or high-dose (5mg/kg) Panobinostat using a continuous 5-day-on-2-day-off regimen for a period of up to 12 weeks, or they were assigned to a control group and left untreated. Disease onset and progression was monitored using in vivo bioluminescence imaging, and systemic human ALL cell infiltration was determined by multi-colour flow cytometry and histochemistry. In addition, molecular changes induced by Panobinostat exposure in MLLr-ALL and non-MLLr-ALL cell lines were assessed in vitro using immunoblotting and cell death assays. RESULTS: High-dose Panobinostat resulted in a significantly and substantially delayed MLLr-ALL disease onset and progression in NSG mice when compared to controls; this was accompanied by a reduction of the systemic disease burden, as evidenced by significantly lower whole-body luminescence signals and substantially decreased splenomegaly. Furthermore, immunohistochemical and flow cytometric data showed hypocellularity and increased cell death in the BM of xenografted NSG mice treated with Panobinostat when compared to untreated control xenografts. This finding correlated well with in vitro results, where exposure with 5 nM Panobinostat induced cell death in MLLr-ALL cells, but not in non-MLLr ALL cells, as determined by both ANNEXINV/7AAD flow cytometry assays and immunoblotting. In addition, on a molecular level, in vitro exposure with Panobinostat induced histone H3 hyperacetylation in all leukaemic cell lines, but did not affect other histone modification marks investigated such as, i.e., histone H3K4 methylation or histone H3K79 methylation. A notable exception was observed in MLLr-ALL cell lines, where Panobinostat exposure correlated with a reduction in histone H2B ubiquitination, a histone modification recently reported to be pivotal for MLLr leukaemogenesis. Concomitantly, Panobinostat - or more generally - HDACi-mediated loss of H2B ubiquitination might play a role in the observed sensitivity of MLLr-ALL cell towards this drug class. CONCLUSIONS: Both the in vivo and the molecular in vitro results show the HDACi Panobinostat to have promising therapeutic potential against MLLr-ALL. Currently, we are investigating Panobinostat in combination with other epigenetic drugs in xenograft models with primary MLLr-ALL patient material in order to consolidate these observations, and to confirm HDACi as a novel powerful treatment strategy in MLLr-ALL. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii36-iii36
Author(s):  
V Laspidea ◽  
M Puigdelloses ◽  
M García-Moure ◽  
I Iñigo-Marco ◽  
J Gallego ◽  
...  

Abstract BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor, being the leading cause of pediatric death caused by cancer. We previously showed that administration of the oncolytic virus Delta-24-RGD to DIPG murine models was safe and led to an increase in the median survival of these animals. However, not all the animals responded, underscoring the need to improve this therapy. In order to increase the antitumoral effect of the virus, we have engineered Delta-24-RGD with the costimulatory ligand 4-1BBL (Delta24-ACT). 4-1BB is a costimulatory receptor that promotes the survival and expansion of activated T cells, and the generation and maintenance of memory CD8+ T cells. In this project, we evaluated the oncolytic effect of Delta24-ACT and the antitumor immune response in DIPG murine models. MATERIALS AND METHODS We use the NP53 and XFM murine DIPG cell lines. Flow cytometry was used to assess cell infectivity and ligand expression. We analyzed viral replication using a method based in hexon detection, and viral cytotoxic effect using the MTS assay. For immunogenic cell death analysis, we measured ATP secretion by a luminometric assay and calreticulin location by flow cytometry and immunofluorescence. For in vivo studies, cells and virus were injected in the pons of the mice, using the screw-guided system. RESULTS In vitro, Delta24-ACT was able to infect and induce cell death in a dose-dependent manner in murine DIPG cell lines. In addition, Delta24-ACT was able to replicate in these tumor cells and to express viral proteins. Moreover, infected cells expressed 41BBL in their membranes. Delta24-ACT could induce immunogenic cell death due to an increased secretion of ATP and calreticulin translocation to the membrane of infected cells (in no-infected cells it located in the ER), DAMPs that can trigger the immune response activation. In vivo, Delta24-ACT demonstrated to be safe in all the tested doses and was able to induce a significant increase in the median survival of the treated animals. Moreover, long-term survivors display immunological memory. CONCLUSIONS Delta24-ACT treatment led to antitumoral effect in DIPG murine cell lines in vitro. Of significance, we have demonstrated that in vivo administration of Delta24-ACT is safe and results in an enhanced antitumor effect. Future in vivo studies will explore the underlying immune mechanism of the virus.


2020 ◽  
Author(s):  
Zhichao Xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets could only be detected in around 6% of nasopharyngeal carcinoma (NPC) patients. Yet, an addiction to dysregulated CDK4/6-cyclinD1 signalling pathway is an essential event in the pathogenesis of NPC. Using our newly established xenografts and cell lines derived from primary, recurrent and metastatic NPC, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemodrugs in treating NPC.Methods: The efficacy of single treatment of palbociclib on NPC models was first evaluated, followed by concurrent treatment with cisplatin or suberanilohydroxamic acid (SAHA). RNA sequencing was used to profile the related pathways in governing the drug response. Palbociclib-resistant NPC cell lines were also established to demonstrate if cisplatin could be used as a second-line treatment once the cells developed resistance to palbociclib. The efficacy of palbociclib treatment on cisplatin-resistant NPC cells was also examined. Results: Palbociclib single drug treatment was confirmed to have a cell cycle arresting effect of NPC cells in G1 phase in vitro. It also had a significant inhibitory effect in all the 6 NPC tumor models in vivo, with a substantial reduction in total tumor volume and proliferation marker Ki-67. Concurrent use of palbociclib dampened the cytotoxic effect of cisplatin in NPC cells in vitro. Notably, combination of palbociclib with SAHA resulted in synergistic cell death of NPC both in vitro and in vivo. Autophagy-associated cell death was found to be involved in the enhanced tumor growth inhibitory effect in the combined palbociclib+SAHA treatment. NPC cell lines trained to sustain growth in high dose of palbociclib and cisplatin remained sensitive in subsequent treatment of cisplatin or palbociclib respectively.Conclusions: This study provides essential evidences to position palbociclib as an alternative therapeutic option to NPC treatment, and to aware the effective administrative timing of palbociclib with other chemodrugs. The findings give the basis for planning of the first-in-human clinical trials of palbociclib regimens in NPC patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 377-377
Author(s):  
Maryam Ghalandary ◽  
Yuqiao Gao ◽  
Martin Becker ◽  
Diana Amend ◽  
Klaus H. Metzeler ◽  
...  

Abstract Background: The prognosis of patients with acute myeloid leukemia (AML) remains poor and novel therapeutic options are intensively needed. Targeted therapies specifically address molecules with essential function for AML and deciphering novel essential target genes is of utmost importance. Functional genomics via CRISPR\Cas9 technology paves the way for the systematic discovery of novel essential genes, but was so far mostly restricted to studying cell lines in vitro, lacking features of, e.g., primary tumor cells and the in vivo tumor microenvironment. To move closer to the clinical situation in patients, we used the CRISPR\Cas9 technology in patient-derived xenograft (PDX) models of AML in vivo. Methods: Primary tumor cells from seven patients with AML were transplanted into immunocompromised NSG mice and serially transplantable PDX models derived thereof. PDX models were selected which carry the AML specific mutations of interest at variant allele frequencies close to 0.5. PDX cells were lentivirally transduced to express the Cas9 protein and a sgRNA; successfully transduced PDX cells were enriched by flow cytometry gating on a recombinant fluorochrome or by puromycin. The customized sgRNA library was designed using the CLUE (www.crispr-clue.de) platform and cloned into a lentiviral vector with five different sgRNAs per target gene, plus positive and negative controls (Becker et al., Nucleic Acids Res. 2020). PDX cells were lentivirally transduced with the CRISPR/Cas9 sgRNA library, transplanted into NSG mice, grown in vivo and cells re-isolated at advanced AML disease. sgRNA distribution was measured by next generation sequencing and compared to input control using the MAGeCK pipeline. Interesting dropout hits from PDX in vivo screens were validated by fluorochrome-guided competitive in vivo experiments in the PDX models, comparing growth of PDX AML cells with knockout of the gene of interest versus control knockout in the same mouse. PDX cells were transduced with lentiviral vectors expressing a single sgRNA, using in parallel three different sgRNAs per target gene. Targeting and control sgRNAs were marked by different fluorochromes; PDX cells expressing targeting or control sgRNA were mixed at a 1:1 ratio, injected into NSG mice and PDX models competitively grown until advanced disease stage, when cell distributions was determined by flow cytometry. Human AML cell lines were studied in vitro for comparison. Results: In search for genes with essential function in AML, we cloned a small customized sgRNA library targeting 34 genes recurrently mutated in AML and tested the library in two PDX AML models in vivo. From the dropouts, we validated most interesting target genes using fluorochrome-guided competitive in vivo assays. Knockout of NPM1 abrogated in vivo growth in all PDX AML models tested, reproducing the known common essential function of NPM1. KRAS proved an essential function in PDX AML models both with and without an oncogenic mutation in KRAS, although with a stronger effect upon KRAS mutation, suggesting that patients with tumors both with and without KRAS mutation might benefit from treatment inhibiting KRAS. Surprising results were obtained for WT1 and DNMT3A. Both genes are frequently mutated in AML, but most AML cell lines tested in vitro do not show an essential function of any of the two genes, in published knockdown or knockout data, including from the Cancer Dependency Map database. On the contrary, knockout of either WT1 or DNMT3A was shown to enhance growth of AML cell lines and increase leukemogenesis in certain models. In PDX models in vivo, we found a clearly essential function for DNMT3A in all AML samples and WT1 in most samples tested and PDX in vivo results were discordant to cell line in vitro data, suggesting that cell line inherent features and/or the in vivo environment influence the function of WT1 and DNMT3A. Conclusion: We conclude that functional genomics in PDX models in vivo allows discovering essentialities hidden for cell line in vitro approaches. WT1 and DNMT3A harbor the potential to represent attractive therapeutic targets in AML under in vivo conditions, warranting further evaluation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2857-2857
Author(s):  
Jonathan Rink ◽  
Adam Yuh Lin ◽  
Shuo Yang ◽  
Amir Behdad ◽  
Reem Karmali ◽  
...  

Introduction: Hematologic malignancies, including B cell lymphomas such as diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), have increased demands for cholesterol and cholesteryl esters to maintain membrane anchored pro-proliferative and pro-survival signaling pathways, including B cell receptor signaling. Recent evidence suggests that certain cancer cell lines, including several anaplastic large T cell lymphoma (ALCL) cell lines, are auxotrophic for cholesterol and are sensitive to cholesterol reduction-induced ferroptosis (Garcia-Bermudez, Nature 2019), an iron dependent form of programmed cell death characterized by accumulation of lipid peroxides. We have developed a cholesterol depleting functional lipoprotein-like nanoparticle (Flip-NP) that specifically targets the high-affinity HDL receptor, scavenger receptor type B1 (SCARB1), which maintains cellular and cell membrane cholesterol homeostasis. Our prior data demonstrated that Flip-NPs induce B cell lymphoma cell death in vitro and in in vivo xenograft models. Accordingly, we hypothesized that the mechanism of cell death by Flip-NPs in B cell lymphomas is ferroptosis, and that Flip-NPs would be potent therapy for an expanded number of cholesterol-addicted malignancies, including ALCL. Methods: After informed consent, primary B cell lymphoma cells were isolated from excisional biopsies from patients with FL or DLBCL. The SUDHL4 [germinal center (GC) DLBCL], Ramos [Burkitt's lymphoma], SUDHL1 [ALCL] and SR-786 [ALCL] cell lines were used for in vitro experiments. SCARB1 expression was quantified using flow cytometry and western blot analysis. Cell viability was quantified using the MTS assay and flow cytometry. Ferroptosis was measured using the lipophilic antioxidant ferrostatin-1 or the iron chelator deferoxamine. Gene expression changes were quantified using RT-qPCR. Lipid peroxidation was measured using C11-BODIPY and flow cytometry. SUDHL1 and SUDHL4 flank tumor xenografts were initiated in SCID-beige mice, with Flip-NPs administered 3 times per week IV. Results: Primary B cell lymphoma cells were isolated from patients with FL (n=4) or DLBCL (n=2), and all samples expressed some level of SCARB1 by flow cytometry. Flip-NPs increased cell death in 3 of the 4 FL samples and 1 of 2 DLBCL samples. In Ramos and SUDHL4 cells, RT-qPCR data showed that Flip-NP-mediated cholesterol reduction led to up-regulation of cholesterol biosynthesis genes and down-regulation of glutathione peroxidase-4 (GPX4), a critical protein responsible for degradation of lipid peroxides. Correspondingly, as shown with C11-BODIPY, Flip-NP treatment increased lipid peroxide accumulation in Ramos and SUDHL4 cells. Addition of ferrostatin-1 or deferoxamine reduced Flip-NP induced cell death, demonstrating that the mechanism-of-action of Flip-NPs involves, at least in part, ferroptosis. Given the sensitivity of cholesterol auxotrophic cell lines to cholesterol reduction-induced ferroptosis, we tested the efficacy of the Flip-NPs against cholesterol auxotrophic ALK+ ALCL cell lines SUDHL1 and SR-786. SCARB1 was expressed in both cell lines. Flip-NPs potently induced cell death in both SUDHL1 and SR-786 cells in vitro. In vivo, systemic administration of Flip-NPs reduced tumor volumes in both SUDHL4 and SUDHL1 tumor xenograft models. Conclusions: Our data show that Flip-NPs reduce GPX4 expression and increase lipid peroxide accumulation in B cell lymphoma cell lines, resulting in ferroptosis. Expanding on these results, Flip-NP efficacy was also demonstrated in cholesterol auxotrophic ALK+ ALCL cell lines and primary patient-derived B cell lymphoma cells. These in vitro results translated to in vivo murine models, as systemic administration of Flip-NPs potently reduced DLBCL and ALK+ ALCL tumor xenograft burden. Flip-NPs are a molecularly targeted, first-in-class therapy that may be effective for malignancies reliant upon cellular cholesterol. Disclosures Behdad: Pfizer: Other: Speaker; Thermo Fisher: Membership on an entity's Board of Directors or advisory committees; Loxo-Bayer: Membership on an entity's Board of Directors or advisory committees. Karmali:Astrazeneca: Speakers Bureau; Takeda, BMS: Other: Research Funding to Institution; Gilead/Kite; Juno/Celgene: Consultancy, Speakers Bureau. Thaxton:Zylem: Other: Co-founder of the biotech company Zylem. Gordon:Juno/Celgene: Other: Advisory Board, Research Funding; Gilead: Other: Advisory Board; Bayer: Other: Advisory Board; Zylem LLC: Other: co-founder; research in nanoparticles in cancer.


2020 ◽  
Author(s):  
zhichao xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets were detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro . Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo , as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro . Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo . This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 302-302 ◽  
Author(s):  
Fiona Brown ◽  
Yang Zhang ◽  
Claire Hinterschied ◽  
Alexander Prouty ◽  
Shelby Sloan ◽  
...  

Mantle cell lymphoma (MCL) is an incurable B cell malignancy, defined by the t(11;14) translocation and comprises 3-6% of non-Hodgkin lymphomas diagnosed annually. MCL is associated with a poor prognosis due to emergence of resistance to immuno-chemotherapy and targeted agents. Due to the late median age of diagnosis, aggressive chemotherapy and stem cell transplantation are often not realistic options. The average overall survival of patients with MCL is 5 years and for the majority of patients who progress on targeted agents like ibrutinib, survival remains at a dismal 3-8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated by elderly patients to improve treatment outcomes and quality of life. Our group has identified the type II protein arginine methyltransferase enzyme, PRMT5, to be dysregulated in MCL and to promote growth and survival by supporting the cell cycle, PRC2 activity, and signaling via the BCR and PI3K/AKT pathways. We have developed first-in-class selective inhibitors of PRMT5 and, in collaboration with Prelude Therapeutics, we have demonstrated that novel SAM-competitive PRMT5 inhibitors provide potent anti-tumor activity in aggressive preclinical models of human MCL. Selective inhibition of PRMT5 in these models and MCL cell lines leads to disruption of constitutive PI3K/AKT signaling, dephosphorylation and nuclear translocation of FOXO1, and enhanced recruitment of this tumor suppressor protein to chromatin. We identified 136 newly emerged FOXO1-bound genomic loci following 48 hours of PRMT5 inhibition in the CCMCL1 MCL line by performing chromatin immunoprecipitation-seq analysis. These genes were markedly upregulated in CCMCL1 cells treated with the PRMT5 inhibitor PRT382 as determined by RNA-seq analysis. Among those genes, we identified and confirmed FOXO1 recruitment to the promoter of BAX, a pro-apoptotic member of the BCL2 family of proteins. Treatment of MCL cell lines (Granta-519, CCMCL1, Z-138, and SEFA) with the selective PRMT5 inhibitor PRT382 (10, 100nM) led to upregulation of BAX protein levels and induction of programmed cell death as measured by annexin V/PI staining and flow cytometry. We hypothesized that induction of BAX would trigger a therapeutic vulnerability to the BCL2 inhibitor venetoclax, and that combination PRMT5/BCL2 inhibitor therapy would drive synergistic cell death in MCL. Single agent and combination treatment with venetoclax and PRT382 was performed in eight MCL lines including a new cell line generated from our ibrutinib-refractory PDX model (SEFA) and IC50 and synergy scores were calculated. The Z-138 line was most sensitive to venetoclax (IC50<10nM) while CCMCL-1, SP53, JeKo-1, and Granta-519 demonstrated relative resistance (IC50>1uM). All lines reached an IC50 <1uM when co-treated with PRT382, with IC50 values ranging from 20 - 500nM. Combination treatments showed high levels of synergy (scores > 20) in 4 lines and moderate synergy (scores 10-20) in 2 lines. The two lines with the highest levels of synergy, Z-138 and SEFA, express high levels of BCL-2 and are Ibrutinib resistant. Overall there was a strong positive correlation between BCL2 expression and synergy score (r=0.707), and no correlation between PRMT5 expression and synergy score (r=0.084). In vivo evaluation in two preclinical MCL models (Granta-519 NSG mouse flank and an ibrutinib-resistant MCL PDX) showed therapeutic synergy with combination venetoclax/PRT382 treatment. In both models, mice were treated with sub-therapeutic doses of venetoclax and/or PRT543 (Granta) or PRT382 (IR-MCL PDX) and tumor burden assessed weekly via flank mass measurement (Granta) or flow cytometry (IR-MCL-PDX). Combination treatment with well-tolerated doses of venetoclax and PRMT5 inhibitors in both MCL in vivo models showed synergistic anti-tumor activity without evidence of toxicity. This preclinical data provides mechanistic rationale while demonstrating therapeutic synergy and lack of toxicity in this preclinical study and justifies further consideration of this combination strategy targeting PRMT5 and BCL2 in MCL in the clinical setting. PRT543, a selective PRMT5 inhibitor, has been advanced into clinical studies for the treatment of patients with solid tumors and hematologic malignancies, including MCL (NCT03886831). Disclosures Zhang: Prelude Therapeutics: Employment. Vaddi:Prelude Therapeutics: Employment. Scherle:Prelude Therapeutics: Employment. Baiocchi:Prelude: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3099-3099
Author(s):  
Mara N Zeissig ◽  
Duncan R Hewett ◽  
Krzysztof M Mrozik ◽  
Vasilios Panagopoulos ◽  
Monika Engelhardt ◽  
...  

Introduction:Multiple myeloma (MM) disease progression is dependent on the ability of the MM plasma cells (PC) to leave the bone marrow (BM), re-enter the peripheral blood (PB) and disseminate to other BM sites. Previous studies show that expression of CXCL12 by BM stromal cells is crucial for MM PC retention within the BM. However, the mechanisms which overcome this retention signal enabling MM PC egress and dissemination via the PB are poorly understood. Previous studies in haematopoietic progenitor cells have demonstrated that CCL3 overcomes the CXCL12 retention signal to drive mobilisation to the PB (Lord et al. Blood 1995). Here, we examined the role of the CCL3 chemokine receptor CCR1 in driving MM PC dissemination. Methods and results: Initially, we assessed the expression of CCR1 protein on CD138+CD38++CD45loCD19- PC from 28 MM, 8 MGUS and 2 SMM patients by flow cytometry. Results show CCR1 expression is significantly increased in newly diagnosed MM compared with premalignant MGUS and SMM patients (p=0.03; CCR1 MFI mean±SEM, MGUS: 53.0±33.6; SMM: 37.6±8.9 MM: 250.9±71.6). Furthermore, CCR1 expression on PB MM PC positively correlated with PB MM PC numbers (p=0.03; n=11 patients). To identify mechanistically how CCR1 may promote dissemination, the effect of CCL3 on the response to CXCL12 in human myeloma cell lines (HMCL) was assessed in vitro. The migration of RPMI-8226 and OPM2 cells was induced by CCL3 or CXCL12 chemoattractant in a transwell assay. Notably, pre-treatment of RPMI-8226 or OPM2 with CCL3 abrogated migration towards CXCL12 and blocked F-actin remodelling in response to CXCL12 in vitro. These findings suggest that CCL3 can desensitise cells to exogenous CXCL12, providing a potential mechanism facilitating loss of the CXCL12 retention signal. To confirm whether CCR1 is required for driving MM PC dissemination, homozygous CCR1 knockout (KO) cells were generated using a lentiviral CRISPR/Cas9 system in OPM2 cells. CCR1-KO OPM2 cells were confirmed to have no detectable CCR1 expression by flow cytometry and could no longer migrate towards CCL3 in vitro. Empty vector (EV) or CCR1-KO OPM2 MM PC were injected into the tibia of immune-compromised NOD-scidgamma (NSG) mice. After 4 weeks, primary tumour within the injected tibia and disseminated tumour in the PB and the contralateral tibia and femur was assessed by flow cytometry. We found that mice bearing CCR1-KO cells have a 45.5% decrease in primary tumour growth (p=0.008; % GFP+ of total mononuclear cells, EV: 77.2±17.2; CCR1-KO: 42.1±24.4), a 97.8% reduction in PB MM PC (p<0.0001; EV: 1.39±0.7; CCR1-KO: 0.03±0.046) anda 99.9% reduction in BM tumour dissemination (p<0.0001; EV: 49.5±17; CCR1-KO: 0.019±0.013), compared with controls. In a supportive study, CCR1 was expressed in the murine MM cell line 5TGM1 using lentiviral transduction. 5TGM1-CCR1 cells were confirmed to express CCR1 by qPCR and were able to migrate towards CCL3 in vitro. 5TGM1-CCR1 or EV cells were injected into the tibiae of C57BL/KaLwRij mice and allowed to initiate systemic MM disease for 3.5 weeks. Importantly, while 55% of control mice exhibited disseminated tumours, this increased to 92% with CCR1 expression (p<0.0001; n=12/group). These data suggest that CCR1 expression on MM PC may play an important role in MM PC dissemination. To determine whether therapeutic inhibition of CCR1 prevents dissemination, the effect of a small molecule CCR1 inhibitor, CCR1i, was assessed in vivo. OPM2 EV or RPMI-8226 cells were injected into the tibia of NSG mice and, after 3 days, mice were treated with CCR1i (15mg/kg) or vehicle twice daily by oral gavage for 25 days. OPM2-inoculated CCR1i-treated mice had 66.1% lower PB MM PC (p<0.0001; % GFP+ of total mononuclear cells, vehicle: 23.9±7.2; CCR1i: 8.1±3.8) and a 22.1% reduction in BM dissemination (p=0.0002; vehicle: 78.1±4.8;CCR1i: 60.8±7.1) compared with controls. Similarly, CCR1i treatment reduced BM dissemination by 59.6% in RPMI-8226 bearing mice (p<0.0001; % GFP+ of total mononuclear cells, vehicle: 0.86±0.15; CCR1i: 0.26±0.05). This suggests that CCR1 inhibition can slow tumour dissemination in vivo. Conclusion:This study identified CCR1 as a novel driver of MM PC dissemination in vivo, at least in part by overcoming the CXCL12 retention signal. Importantly, this study demonstrated for the first time that targeting CCR1 can be a viable therapeutic strategy to limit dissemination and potentially slow disease progression. Disclosures Croucher: Trovagene: Employment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246197
Author(s):  
Jorge Marquez ◽  
Jianping Dong ◽  
Chun Dong ◽  
Changsheng Tian ◽  
Ginette Serrero

Antibody-drug conjugates (ADC) are effective antibody-based therapeutics for hematopoietic and lymphoid tumors. However, there is need to identify new targets for ADCs, particularly for solid tumors and cancers with unmet needs. From a hybridoma library developed against cancer cells, we selected the mouse monoclonal antibody 33B7, which was able to bind to, and internalize, cancer cell lines. This antibody was used for identification of the target by immunoprecipitation and mass spectrometric analysis, followed by target validation. After target validation, 33B7 binding and target positivity were tested by flow cytometry and western blot analysis in several cancer cell lines. The ability of 33B7 conjugated to saporin to inhibit in vitro proliferation of PTFRN positive cell lines was investigated, as well as the 33B7 ADC in vivo effect on tumor growth in athymic mice. All flow cytometry and in vitro internalization assays were analyzed for statistical significance using a Welsh’s T-test. Animal studies were analyzed using Two-Way Analysis of Variance (ANOVA) utilizing post-hoc Bonferroni analysis, and/or Mixed Effects analysis. The 33B7 cell surface target was identified as Prostaglandin F2 Receptor Negative Regulator (PTGFRN), a transmembrane protein in the Tetraspanin family. This target was confirmed by showing that PTGFRN-expressing cells bound and internalized 33B7, compared to PTGFRN negative cells. Cells able to bind 33B7 were PTGFRN-positive by Western blot analysis. In vitro treatment PTGFRN-positive cancer cell lines with the 33B7-saporin ADC inhibited their proliferation in a dose-dependent fashion. 33B7 conjugated to saporin was also able to block tumor growth in vivo in mouse xenografts when compared to a control ADC. These findings show that screening antibody libraries for internalizing antibodies in cancer cell lines is a good approach to identify new cancer targets for ADC development. These results suggest PTGFRN is a possible therapeutic target via antibody-based approach for certain cancers.


Antibodies ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 37 ◽  
Author(s):  
Jennifer Linden ◽  
Kiel Telesford ◽  
Samantha Shetty ◽  
Paige Winokour ◽  
Sylvia Haigh ◽  
...  

The pore-forming epsilon toxin (ETX) produced by Clostridium perfringens is among the most lethal bacterial toxins known. Sensitive antibody-based reagents are needed to detect toxin, distinguish mechanisms of cell death, and prevent ETX toxicity. Using B-cell immuno-panning and cloning techniques, seven ETX-specific monoclonal antibodies were generated from immunized rabbits. ETX specificity and sensitivity were evaluated via western blot, ELISA, immunocytochemistry (ICC), and flow cytometry. ETX-neutralizing function was evaluated both in vitro and in vivo. All antibodies recognized both purified ETX and epsilon protoxin via western blot with two capable of detecting the ETX-oligomer complex. Four antibodies detected ETX via ELISA and three detected ETX bound to cells via ICC or flow cytometry. Several antibodies prevented ETX-induced cell death by either preventing ETX binding or by blocking ETX oligomerization. Antibodies that blocked ETX oligomerization inhibited ETX endocytosis and cellular vacuolation. Importantly, one of the oligomerization-blocking antibodies was able to protect against ETX-induced death post-ETX exposure in vitro and in vivo. Here we describe the production of a panel of rabbit monoclonal anti-ETX antibodies and their use in various biological assays. Antibodies possessing differential specificity to ETX in particular conformations will aid in the mechanistic studies of ETX cytotoxicity, while those with ETX-neutralizing function may be useful in preventing ETX-mediated mortality.


Sign in / Sign up

Export Citation Format

Share Document