scholarly journals Pomalidomide Induces Expansion of Activated and Central Memory CD4+ and CD8+ T Cells in Vivo in Patients with and without HIV Infection

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4128-4128 ◽  
Author(s):  
Mark N. Polizzotto ◽  
Irini Sereti ◽  
Thomas S. Uldrick ◽  
Kathleen M. Wyvill ◽  
Stig M. R. Jensen ◽  
...  

Abstract Background: Despite antiretroviral therapy (ART), people with HIV continue to exhibit immune deficits including failure to fully reconstitute CD4 T cell numbers and function, resulting in increased risks of tumors and infections and reduced response to vaccination. Pomalidomide, a derivative of thalidomide (IMID), has immunomodulatory properties that may be beneficial in this setting. We explored its impact on lymphocyte number and activation in patients with and without HIV treated within a prospective clinical trial for Kaposi sarcoma. Methods: Patients received pomalidomide 5mg orally for 21 days of 28 day cycles. Assessments were performed every 4 weeks for lymphocyte numbers, Kaposi sarcoma associated herpesvirus (KSHV/HHV8) viral load (VL) and HIV VL and at 8 weeks for T cell subsets and activation by immunophenotyping of peripheral blood mononuclear cells (PBMC). KSHV VL in PBMC and HIV VL in plasma were assayed by quantitative PCR; for HIV VL we used an ultrasensitive single copy assay. Changes from baseline were evaluated using the Wilcoxon signed rank test with P<0.005 considered significant given multiple comparisons. Differences in changes between the HIV infected and uninfected groups were evaluated using the Wilcoxon rank sum test. Study registered as NCT1495598. Results: 19 patients (12 HIV infected, 7 uninfected) median age 50 years (range 32-74) were studied. All with HIV were receiving ART for median 48 months (7-227), HIV VL 1.5 copies/mL (<0.5–37), and CD4 378 cells/µl (135–752). At week 4 and 8 of therapy we observed significant increases in CD4 and CD8 counts, with a decline in CD19 B cells and no change in NK cells or HIV VL. A transient increase in KSHV VL was seen at week 4, not sustained at week 8: Abstract 4128. Table 1ParameterBaseline (cells/µl unless noted)Change to Week 4 (Med, range)PChange to Week 8 (Med, range)PCD31143 (525–2305)+264 (-419–1524)0.0028+210 (-496–1455)0.0020CD4429 (135–1171)+107 (-87–650)0.0009+86 (-37–491)0.0015CD8495 (259–1529)+108 (-271–915)0.0085+155 (-495–834)0.0046NK184 (28–557)+30 (-130–117)0.52+2 (-174–127)0.98CD19139 (9–322)-47 (-117–76)0.0039-79 (-169–62)<0.0001KSHV VL 0 copies/PBMC (0–8750)+23 (-92–5250)0.00980 (-92–20850)0.31Plasma HIV VL (infected pts)1.5 copies/mL (<0.5–37)+0.3 (-1.5–3.0)0.75+0.75 (0–28)0.13 In addition, at week 8 both CD4 and CD8 T cells showed significant increases in activation (CD38+, HLADR+ and DR+/38+) and decreases in senescence (CD57+). Both also showed a significant shift towards increased central memory (CM) and away from naive (N) and effector (E) phenotypes, with no change in effector memory (EM) cells: Abstract 4128. Table 2CD4 SubsetsBaseline (%) (med, range)Absolute Change in % at Week 8 (med, range)PRO- 27+ (N)32.6 (13.3–76.5)-6.6 (-35.8–21.6)0.002RO+ 27+ (CM)41.9 (13.6–63.6)+6.4 (-15.5–32.5)0.027RO+ 27- (EM)16.7 (4.6–31.7)+1.7 (-7.2–21.0)0.28RO- 27- (E)3.3 (0.4–14.3)-1.5 (-5.7–0.3)0.000438+34.5 (11.2–67.3)+4.3 (-13.0–19.4)0.024HLA DR+8.9 (3.3–25.0)+8.3 (0.7–19.5)<0.000138+ DR+2.5 (0.6–11.7)+2 (-1.0–8.1)<0.000157+6.3 (0.6–26.6)-1.34 (-16.2–7.6)0.034CD8 SubsetsRO- 27+ (N)21.0 (9.7–70.4)-5.1 (-13.7–14.3)0.019RO+ 27+ (CM)17.1 (2.5–37.9)+8.1 (-8.4–18.6)0.0047RO+ 27- (EM)18.4 (4.6–40.8)+1.0 (-9.4–44.9)0.35RO- 27- (E)31.8 (4.1-63.7)-6.1 (-47.3–22.5)0.0138+33.4 (8.3–66.0)+19.9 (-0.8–40.6)<0.0001HLA DR+19.6 (5.0–46.4)+11.6 (-4.7–32.1)0.000138+ DR+8.0 (0.4–33.3)+8.5 (0.1–22.6)<0.000157+30.8 (2.9–72.9)-11.0 (-28.5–6.1)<0.0001 There were no significant changes in Ki67 or PD-1 expression in either CD4 or CD8 cells. There was no significant difference between HIV infected and uninfected patient groups in the observed effects on any parameter including cell number and phenotype. Conclusions: Pomalidomide induced significant increases in the number of CD4 and CD8 T cells and the proportion of activated and central memory cells and decreased senescence in both HIV infected and uninfected subjects. Effects were not explained by alterations in HIV viremia. The transient early rise in KSHV VL may reflect reactivation of latent infection and enhance immune killing of KSHV infected cells. This analysis sheds light on possible mechanisms of IMID activity in viral-associated tumors. As the first study of immune modulation by IMIDs in vivo in people with HIV it also suggests exploration of IMIDs to augment immune responsiveness in HIV and other immunodeficiencies is warranted. Disclosures Polizzotto: Celgene Corporation: Research Funding. Off Label Use: Pomalidomide for Kaposi sarcoma. Uldrick:Celgene Corporation: Research Funding. Zeldis:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Yarchoan:Celgene Corporation: Research Funding.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3242-3242
Author(s):  
Robbert van der Voort ◽  
Claudia Brandao ◽  
Thomas J. Volman ◽  
Viviènne Verweij ◽  
Klaas van Gisbergen ◽  
...  

Abstract Abstract 3242 Although the importance of the bone marrow (BM) in hematopoiesis is well known, its function in adaptive immune responses has only recently been acknowledged. Currently it is known that the BM contains fully functional CD4+ and CD8+ T cells that can engage in both primary and secondary immune responses. Interestingly, most of these T cells belong to the memory T cell lineage, identifying the BM as one of the largest memory T cell reservoirs in the body. Since not much is known about the trafficking of BM T cells, we compared the homing phenotype and function of T cell subsets in the BM, blood, spleen and peripheral lymph nodes (pLN). In addition, we determined the expression of chemokine mRNA and protein levels in the BM and other lymphoid organs. We confirmed that at least 80% of the CD4+ and 60% of the CD8+ BM T cells have a memory phenotype, and that most CD4+ T cells belong to the effector memory lineage, while the CD8+ population predominantly consists of central memory T cells. Most BM T cells expressed the chemokine receptor CXCR3, the adhesion molecules P-selectin glycoprotein ligand 1 and VLA-4, and increased levels of CD44 and LFA-1, as compared to T cells from the spleen. In addition, L-selectin was absent from most CD4+ BM T cells, but present on virtually all CD8+ T cells. Notably, the percentage of CXCR3+ T cells within the effector memory and central memory subsets from BM was higher than within the same subsets from pLN. Furthermore, BM contained significant mRNA levels of the CXCR3 ligands CXCL9, CXCL10 and CXCL11. An in vivo migration assay using a mixture of fluorescent-labeled T cells from CXCR3-deficient mice and control mice indicated however that during homeostasis CXCR3 does not play a major role in BM entry or retention. These data suggest that CXCR3 expressed by memory T cells is rather involved in BM exit, than in BM entry. Indeed, we observed that, as compared to control mice, CXCR3−/− mice contained significantly more CD4+ and CD8+ T cells in their BM. Additional in vitro assays demonstrated that CD4+ and CD8+ BM T cells migrated vigorously in response to CXCL9 and CXCL10, generally released in high concentrations during inflammation. Finally, we demonstrate that CXCR3−/− effector/effector memory T cells, but not wild type T cells, accumulate in the BM of mice infected with lymphocytic choriomeningitis virus. Altogether, these data demonstrate that the BM is a major reservoir of memory T cells that employ CXCR3 to quickly respond to chemotactic signals from inflamed tissues. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4805-4805
Author(s):  
Tzu-Yun Kuo ◽  
Aisha Hasan ◽  
Richard J O'Reilly

Abstract Initial clinical trials of adoptive immunotherapy have shown that the efficacy of adoptively transferred T-cells in man is often limited by the failure of cultured T cells, particularly cloned CD8 T cells, to persist in vivo. These studies demonstrated that the transferred T cells induced only transient responses and that persistence of the transferred T-cell clonotypes correlated with disease regression. A previous study suggested that CMV virus-specific CD8 T cell clones derived from central memory T cells (TCM), but not effector memory T cells (TEM), persisted long-term in non-human primates. On the other hand, another study comparing TCM and TEM derived SIV virus specific CD8 T-cell clones that were adoptively transferred in non-human primates demonstrated limited persistence of both TCM and TEM derived transferred T cells, and failed to show any difference between the two cell types. Because of these conflicting data, we have reexamed the persistence of adoptively transferred viral antigen specific T-cells derived from TCM and TEM population. Accordingly, we developed a NOG mouse model for studying the ability of human CMVpp65-specific T cells derived from central memory and effector memory populations to migrate to and accumulate in human tumor xenografts expressing CMVpp65, to alter the growth of these tumors and to persist in the tumors. This model also allows us to test immunomodulating agents and their ability to enhance targeted T-cell accumulations, antitumor activity and persistence. We analyzed CMVpp65-specific CD8 T cells derived from TCM and TEM precursors in vitro and in vivo. To tract the T-cells in vivo, we transduced membrane-bound Gaussia luciferase into TCM and TEM populations and monitored T cell trafficking by in vivo bioluminescence. Contrary to expectation, our results initially showed no differences between TCM and TEM derived CMVpp65-specific T-cell in mice co-treated with IL-2 in the time to accumulation, ultimate level of accumulation, degree of CMVpp65+ tumor regression or T-cell persistence. However, in mice cotreated with IL-15/IL-15Rα complex, both TCM and TEM exhibited more sustained engraftment and more prolonged accumulation in both the targeted tumor and in the marrow. In mice treated with IL-15/IL-15Rα, TCM and TEM derived T cells showed a similar effector memory phenotype and a similar level of regression of tumor growth. Thus, adoptive transfer of CMVpp65 specific TCM or TEM when combined with IL-15/IL-15Rα complex may support better persistence of antigen-specific T-cells following adoptive immunotherapy. Studies comparing IL-15/IL-15Rα complex with IL-15 alone are in progress. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3243-3243
Author(s):  
Kazuaki Yokoyama ◽  
Tokiko Nagamura-Inoue ◽  
Shin Nakayama ◽  
Ikuo Ishige ◽  
Kazuo Ogami ◽  
...  

Abstract CD26 is a transmembrane glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity as well as costimulatory activity of mitotic signals triggered by the CD3/TCR complex. Based on the expression level of CD26, CD4+ and CD8+ T cells can be divided into 3 (high/intermediate/low or negative) subsets. The significance of CD26 has been studied mainly on CD4+ T cells, and CD26highCD4+ T cells are considered to represent effector memory T cells of a typical Th1 phenotype producing IL2 and IFNg. Furthermore, we reported a significant decrease of this subset in CML patients under imatinib therapy in comparison to those under IFNa therapy and normal volunteers. In contrast, the role of each subset of CD8+ T cells has not yet been clarified. Multi-parameter flow cytometry analysis was performed to characterize CD8+ T cells differentially expressing CD26 in combination with intracellular detection of effector molecules such as perforin (P) and granzyme B (Gr). The capacity to secrete effector cytokines such as IFNg following short-term stimulation was also assessed. As a result, according to the expression level of CD26, we could clearly categorize CD8+ T cells as follows: CD26highCD8+ T cells are defined as central memory T cells which has a phenotype of CD45RO+CD28+CD27+ IFNg+Gr−P+/−, CD26intCD8+ T cells as naïve T cells of CD45ROCD28+ CD27+ IFNg−Gr−P−, and CD26lowCD8+ T cells as effector memory/effector T cells of CD45RO−/+ CD28−CD27−IFNg++Gr++P++, respectively. We next investigated the effects of imatinib on 3 distinct subsets during CD8+ T cell differentiation program. Peripheral blood mononuclear cells were primed with anti-CD3/CD28 MAb and subjected to the grading doses of imatinib for short term culture, followed by flow cytometory. CFSE labeling was used for monitoring cell proliferation. Intriguingly, we found that imatinib dose-dependently inhibits activation, cytokine production and proliferation of CD26highCD8+ central memory T cell subsets in a differentiation stage-specific manner. Finally, we compared the absolute number of peripheral blood CD26highCD8+ T cell subsets between 20 patients with CML in imatinib-induced CCR and 20 normal volunteers, clearly indicating a significant decrease of this subset in CML patients (22.30/ml vs 45.60/ml, p<0.01). The present study offers another evidence for immunomodulatory effects of imatinib or the critical role of Abl (-related) kinase in T cell development, and draws special attention to susceptibility to viral infection of CML patients under long-term imatinib therapy. Figure Figure


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 917-917 ◽  
Author(s):  
Sarah Gothberg ◽  
Kanutte Huse ◽  
Arne Kolstad ◽  
Ole Christian Lingjærde ◽  
Bjørn Østenstad ◽  
...  

Abstract Background: Follicular lymphoma (FL) is the most common subtype of indolent non Hodgkin's lymphoma (NHL). Median survival is long (>10 years), but current chemo-immunotherapy regimens used for FL are usually not curative. While T cells in the FL tumor microenvironment are considered dysfunctional and associated with disease progression, a better understanding of T-cell signaling may reveal how to productively engage tumor-infiltrating T cells to kill lymphoma B cells. Our previous study showed that expression of the immune checkpoint receptor PD-1 was directly correlated with reduced cytokine signaling in FL T cells (Myklebust et al., Blood 2013). Antibody immunotherapy targeting the PD-1/PD-L1 pathway has shown significant activity in solid tumors, but these benefits have not been as profound in NHLs, including FL. Co-blockade of checkpoint inhibitors may therefore be necessary to generate optimal anti-tumor responses in FL. The hypothesis underlying this study was that characterizing signaling responses in FL tumor-infiltrating T cells will identify new targets for combination of checkpoint blockade. Methods: Surface expression of 9 checkpoint receptors governing T cell function was measured in subsets of CD4 and CD8 T cells from FL lymph node tumors (n = 14) and from healthy donor tonsils (n= 11) and peripheral blood samples (n = 7) using fluorescence flow cytometry. Patterns of checkpoint receptor expression were compared with 1) intracellular phospho-protein signaling response and 2) cytokine production for subsets of T cells infiltrating FL tumors and the corresponding T-cell populations in healthy tonsils. Phospho-specific flow cytometry measured phosphorylation of STATs and T cell receptor (TCR) signaling effectors within minutes following stimulation by IL-4, IL-7, IL-21, or α-CD3+α-CD28 (TCR stimulation) antibodies. Results: CD4 and CD8 T cells infiltrating FL tumors were gated into subsets defined by PD-1 and ICOS protein expression, and compared to cognate T cell subsets in healthy tonsils. FL and tonsil T cells closely matched in their signaling responses to IL-4, IL-7, and IL-21 stimulation, with PD-1 expressing cells (CD4+PD-1hiICOS+ (TFH) and CD8+PD-1int T cells) exhibiting modest phospho-protein signaling responses compared to T cells not expressing PD-1. Furthermore, TCR membrane proximal signaling events (p-CD3ζ, p-SLP76) following TCR stimulation were comparable in FL and tonsil T cells. This contrasted reduced phospho-ERK signaling in all CD4 and CD8 T cell subsets infiltrating FL tumors which distinguished them from tonsillar T cells. IFN-γ production also differed between FL and tonsils, as CD8 T cells infiltrating FL tumors produced less IFN-γ. Reduced IFN-γ production was independent of PD-1 expression, suggesting suppressed function in these T cells which could be due to inhibitory receptors other than PD-1. Of the 9 checkpoint receptors measured, PD-1 and T cell Ig and ITIM domain (TIGIT) were expressed at the highest frequency. In FL, TIGIT was expressed in 58% and 80% of CD8 effector and effector memory cells, respectively, as compared to 43% and 68% of the cognate healthy tonsillar subsets. TIGIT was also frequently expressed in CD4 FL T cells, as 52% and 79% of effector and effector memory cells expressed TIGIT, respectively, as compared to 16% and 59% of the corresponding subsets from healthy tonsils. viSNE analysis demonstrated that TIGIT and PD-1 were frequently co-expressed in FL T cells, and a large fraction of PD-1int T cells had high expression of TIGIT (Figure 1). These results provide a rationale for co-blockade of PD-1 and TIGIT in FL and for investigation of how co-blockade impacts T cell functions. Conclusions: These results reveal specific suppression of cytokine signaling in CD8 effector T cells infiltrating FL tumors and identify TIGIT and PD-1 as strong candidates for co-checkpoint blockade in FL. A deeper understanding of the interplay between checkpoint receptors and key T cell cytokine signaling events in FL will further assist in engineering immuno-therapeutic regiments that improve FL patient clinical outcomes. Disclosures Kolstad: Nordic Nanovector: Other: Membership of Scientific Advisory Board. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Irish:Incyte: Research Funding; Janssen: Research Funding; Cytobank, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5486-5486
Author(s):  
Jacqueline R. Rivas ◽  
Sara S. Alhakeem ◽  
Joseph M. Eckenrode ◽  
Yinan Zhang ◽  
James P. Collard ◽  
...  

B-cell Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in the Western world, accounting for nearly one third of all leukemia cases. In CLL abnormal B-cells accumulate in the blood and lymphoid organs leading to serious immune dysfunction. This immune suppression is in part due to CLL-produced mediators that downregulate T-cell responses, such as the regulatory cytokine Interleukin-10 (IL-10). We previously found that eliminating T-cell IL-10 signaling enhanced their ability to control CLL growth in vivo. Therefore, we investigated the potential for IL-10 blockade to enhance the anti-tumor activity of CD8+ T-cells. In our studies we use human CLL cells as well as the Eμ-Tcl1 mouse model of CLL, in which the oncogene Tcl1 is expressed under the immunoglobulin VH promoter and µ-enhancer. IL-10 production by CLL cells depends on the transcription factor Sp1, and we found that the Sp1 inhibitor mithramycin (MTM) suppresses CLL IL-10 production. However, MTM is not well tolerated in vivo, so we synthesized novel, less toxic analogues of MTM to test for IL-10 suppression. One of these MTM analogues similarly suppresses mouse and human CLL IL-10 with little to no effect on effector T-cell cytokines and viability. Therefore, we treated mice with this analogue in the adoptive transfer model of Eμ-Tcl1, and later combined this with anti-PD-L1 checkpoint blockade to determine its effects on anti-tumor immunity. Here we show that this MTM analogue enhances the efficacy of anti-CLL T-cells in vivo by suppressing CLL IL-10 production, allowing for increased CD8+ T-cell proliferation, effector memory cell prevalence, and CD8+ interferon-γ (IFN-γ) production. Treatment slowed the growth of Eμ-TCL1 CLL cells in the spleen and blood and reduced the spread of CLL to the bone marrow. Furthermore, suppressing IL-10 in this manner improved responses to anti-PD-L1 treatment, decreasing the burden of CLL cells and the functionality of CD8+ T-cells in comparison to anti-PD-L1 alone. The overall number and frequency of CD8+ T-cells was higher in double treated mice, with more IFN-γ+ CD8+ cells, more effector memory cells, and fewer exhausted T-cells. This paradigm shifting approach is novel as current therapies for CLL do not target IL-10 and it may increase the efficacy of T-cell-based immunotherapies in human CLL. T-cell-based immunotherapies have experienced limited success in trials with CLL, and since there is no cure for this disease, our approach may provide a new avenue for combination therapies. Moreover, IL-10 blockade could be applicable to other B-cell malignancies and even solid tumors where T-cell suppression plays a significant role. Disclosures Hildebrandt: Axim Biotechnologies: Equity Ownership; Kite Pharma: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other; Sangamo: Equity Ownership; Novartis: Equity Ownership; Axim Biotechnologies: Equity Ownership; Juno Therapeutics: Equity Ownership; Kite Pharma: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Travel; Novartis: Equity Ownership; Insys Therapeutics: Equity Ownership; Abbvie: Equity Ownership; GW Pharmaceuticals: Equity Ownership; Cardinal Health: Equity Ownership; Immunomedics: Equity Ownership; Endocyte: Equity Ownership; Clovis Oncology: Equity Ownership; Cellectis: Equity Ownership; Aetna: Equity Ownership; CVS Health: Equity Ownership; Celgene: Equity Ownership; Bluebird Bio: Equity Ownership; Bristol-Myers-Squibb: Equity Ownership; crispr therapeutics: Equity Ownership; IDEXX laboratories: Equity Ownership; Johnson & Johnson: Equity Ownership; Pfizer: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Travel; Procter & Gamble: Equity Ownership; Vertex: Equity Ownership; Bayer: Equity Ownership; Scotts-Miracle: Equity Ownership; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel, Research Funding; Takeda: Research Funding; Pharmacyclics: Research Funding; Astellas: Other: Travel.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yufei Mo ◽  
Kelvin Kai-Wang To ◽  
Runhong Zhou ◽  
Li Liu ◽  
Tianyu Cao ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 815-815
Author(s):  
Farhad Ravandi ◽  
Naval Daver ◽  
Guillermo Garcia-Manero ◽  
Christopher B Benton ◽  
Philip A Thompson ◽  
...  

Abstract Background: Blocking PD-1/PD-L1 pathways enhances anti-leukemia responses by enabling T-cells in murine models of AML (Zhang et al, Blood 2009). PD-1 positive CD8 T-cells are increased in bone marrow (BM) of pts with AML (Daver et al, AACR 2016). PD1 inhibition has shown activity in AML (Berger et al, Clin Cancer Res 2008). We hypothesized that addition of nivolumab to an induction regimen of ara-C and idarubicin may prolong relapse-free survival (RFS) and overall survival (OS); this study was designed to determine the feasibility of this combination. Methods: Pts with newly diagnosed acute myeloid leukemia (by WHO criteria; ≥20% blasts) and high risk MDS (≥10% blasts) were eligible to participate if they were 18-65 yrs of age and had adequate performance status (ECOG ≤3) and organ function (LVEF ≥ 50%; creatinine ≤ 1.5 g mg/dL, bilirubin ≤ 1.5 mg/dL and transaminases ≤ 2.5 times upper limit of normal). Treatment included 1 or 2 induction cycles of ara-C 1.5 g/m2 over 24 hours (days 1-4) and Idarubicin 12 mg/m2 (days 1-3). Nivolumab 3 mg/kg was started on day 24 ± 2 days and was continued every 2 weeks for up to a year. For pts achieving complete response (CR) or CR with incomplete count recovery (CRi) up to 5 consolidation cycles of attenuated dose ara-C and idarubicin was administered at approximately monthly intervals. Eligible pts received an allogeneic stem cell transplant (alloSCT) at any time during the consolidation or thereafter. Results: 3 pts with relapsed AML were treated at a run-in phase with a dose of nivolumab 1 mg/kg without specific drug-related toxicity. Subsequently, 32 pts (median age 53 yrs; range, 26-65) were treated as above including 30 with AML (24 de novo AML, 2 therapy-related AML, 3 secondary AML and 1 therapy-related secondary AML) and 2 high risk MDS. Pre-treatment genetic risk by ELN criteria was 11 adverse, 16 intermediate, and 5 favorable, including 2 FLT3 -ITD mutated, 5 NPM1 mutated, and 7 TP53 mutated. All 32 pts were evaluable for response and 23 (72%) achieved CR/CRi (19 CR, 4 CRi). The 4-week and 8 week mortality was 6% and 6%. The median number of doses of nivolumab received was 6 (range, 0-13); one pt did not receive nivolumab due to insurance issues. 9 pts underwent an alloSCT. After a median follow-up of 8.3 mths (range, 1.5-17.0) the median RFS among the responding pts has not been reached (range, 0.1 - 15.8 mths) and the median OS has not been reached (range 0.5-17.0 mths). Grade 3/4 immune mediated toxicities have been observed in 5 pts and include rash, pancreatitis, and colitis. Other grade 3/4 toxicities thought to be potentially related to nivolumab include cholecystitis in one pt. 9 pts proceeded to an alloSCT. Donor source was matched related in 2, matched unrelated in 6 and haplo-identical in 1 pt. Conditioning regimen was Fludarabine plus busulfan-based in 8, and fludarabine plus melphalan in 1 pt. 4 pts developed graft versus host disease (GVHD)(grade I/II in 3, grade III/IV in 1), which responded to treatment in 3. Multicolor flow-cytometry studies are conducted by the Immunotherapy Platform on baseline (prior to first dose of nivolumab) and on-treatment BM aspirate and peripheral blood to assess the T-cell repertoire and expression of co-stimulatory receptors and ligands on T-cell subsets and leukemic blasts, respectively. The baseline BM was evaluated on 23 of the 32 evaluable pts, including 18 responders and 5 non-responders. Pts who achieved a CR/CRi had a trend of higher frequency of live CD3+ total T cell infiltrate as compared to non-responders in the baseline BM aspirates (Fig 1A). We evaluated expression of immune markers on T cell subsets: CD4 T effector cells [Teff]: CD3+CD4+CD127lo/+Foxp3-, CD4 T regulatory cells [Treg]: CD3+CD4+CD127-Foxp3+, and CD8 T cells. At baseline, BM of non-responders had significantly higher percentage of CD4 T effector cells co-expressing the inhibitory markers PD1 and TIM3 (p&lt;0.05) and a trend towards higher percentage of CD4 T effector cells co-expressing PD1 and LAG3 compared to responders (Fig 1B). Co-expression of TIM3 or LAG3 on PD1+ T cells have been shown to be associated with an exhausted immune phenotype in AML (Zhou et al., Blood 2011). Conclusion: Addition of nivolumab to ara-C and anthracycline induction chemotherapy is feasible and safe in younger pts with AML. Among the pts proceeding to alloSCT the risk of GVHD is not significantly increased. Figure 1 Figure 1. Disclosures Daver: Pfizer Inc.: Consultancy, Research Funding; Otsuka America Pharmaceutical, Inc.: Consultancy; Sunesis Pharmaceuticals, Inc.: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Bristol-Myers Squibb Company: Consultancy, Research Funding; Kiromic: Research Funding; Karyopharm: Consultancy, Research Funding; Jazz: Consultancy; Immunogen: Research Funding; Daiichi-Sankyo: Research Funding; Incyte Corporation: Honoraria, Research Funding. Thompson: Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees. Jabbour: Bristol-Myers Squibb: Consultancy. Takahashi: Symbio Pharmaceuticals: Consultancy. DiNardo: Novartis: Honoraria, Research Funding; Daiichi-Sankyo: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Sharma: Jounce: Consultancy, Other: stock, Patents & Royalties: Patent licensed to Jounce; Astellas: Consultancy; EMD Serono: Consultancy; Amgen: Consultancy; Astra Zeneca: Consultancy; GSK: Consultancy; Consetellation: Other: stock; Evelo: Consultancy, Other: stock; Neon: Consultancy, Other: stock; Kite Pharma: Consultancy, Other: stock; BMS: Consultancy. Cortes: BMS: Consultancy, Research Funding; Sun Pharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Teva: Research Funding; ImmunoGen: Consultancy, Research Funding; ARIAD: Consultancy, Research Funding. Kantarjian: Delta-Fly Pharma: Research Funding; Amgen: Research Funding; ARIAD: Research Funding; Novartis: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258743
Author(s):  
Nathella Pavan Kumar ◽  
Chandrasekaran Padmapriyadarsini ◽  
Anuradha Rajamanickam ◽  
Perumal Kannabiran Bhavani ◽  
Arul Nancy ◽  
...  

BCG vaccination is known to induce innate immune memory, which confers protection against heterologous infections. However, the effect of BCG vaccination on the conventional adaptive immune cells subsets is not well characterized. We investigated the impact of BCG vaccination on the frequencies of T cell subsets and common gamma c (γc) cytokines in a group of healthy elderly individuals (age 60–80 years) at one month post vaccination as part of our clinical study to examine the effect of BCG on COVID-19. Our results demonstrate that BCG vaccination induced enhanced frequencies of central (p<0.0001) and effector memory (p<0.0001) CD4+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001), stem cell memory (p = 0.0001) CD4+ T cells and regulatory T cells. In addition, BCG vaccination induced enhanced frequencies of central (p = 0.0008), effector (p<0.0001) and terminal effector memory (p<0.0001) CD8+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001) and stem cell memory (p = 0.0034) CD8+T cells. BCG vaccination also induced enhanced plasma levels of IL-7 (p<0.0001) and IL-15 (p = 0.0020) but diminished levels of IL-2 (p = 0.0033) and IL-21 (p = 0.0020). Thus, BCG vaccination was associated with enhanced memory T cell subsets as well as memory enhancing γc cytokines in elderly individuals, suggesting its ability to induce non-specific adaptive immune responses.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1071-1071
Author(s):  
Melody M. Smith ◽  
Cynthia R. Giver ◽  
Edmund K. Waller ◽  
Christopher R. Flowers

Abstract Ex vivo modification of donor lymphocytes with purine analogs (mDL) may help to minimize graft versus host disease (GvHD) while providing beneficial graft versus leukemia (GvL) effects. In a murine model system, we have shown that allogeneic donor splenocytes, treated with fludarabine ex vivo have significantly reduced GvHD activity when transferred to irradiated recipient mice, and retain anti-viral and GvL activities (Giver, 2003). This effect appears to be mediated by relative depletion of donor CD4 CD44low, “naive” T-cells. As a first step toward developing mDL for use in patients, we sought to evaluate the effects of ex vivo fludarabine exposure on human T-cell subsets, and to determine the minimum dose of fludarabine required to achieve this effect. Methods: Peripheral blood mononuclear cell samples from 6 healthy volunteers were evaluated at 0, 24, 48, and 72 hour time points after ex vivo incubation in varying dosages of fludarabine: 2, 5, and 10(n=3) mcg/ml. Fludarabine incubated samples were compared to samples that received no fludarabine (untreated). The total viable cell number was determined and the fractions and absolute numbers of viable CD4 and CD8 naïve and memory T-cells were determined using flow cytometry after incubation with 7-AAD (dead cell stain), CD4, CD8, CD45RA, CD62L, and CCR7 antibodies, and measuring the total viable cells/ml. Results: The numbers of viable CD4 and CD8 T-cells remained relatively stable in control cultures. Without fludarabine, the average viability at 72 hr of naive and memory T-cells were 92% and 77% for CD4 and 86% and 63% for CD 8 (Fig. 1A). Naive CD4 T-cells were more sensitive to fludarabine-induced death than memory CD4 cells. At 72 hr, the average viability of fludarabine-treated naive CD4 T-cells was 33% at 2 mcg/ml (8.2X the reduction observed in untreated cells) and 30% at 5 mcg/ml, while memory CD4 T-cells averaged 47% viability at 2 mcg/ml (2.3X the reduction observed in untreated cells) (Fig. 1B) and 38% at 5 mcg/ml. The average viability of naive CD8 T-cells at 72 hr was 27% at 2 mcg/ml and 20% at 5 mcg/ml, while memory CD8 T-cell viability was 22% at 2 mcg/ml and 17% at 5 mcg/ml. Analyses on central memory, effector memory, and Temra T-cells, and B-cell and dendritic cell subsets are ongoing. The 5 and 10 mcg/ml doses also yielded similar results in 3 initial subjects, suggesting that 2 mcg/ml or a lower dose of fludarabine is sufficient to achieve relative depletion of the naive T-cell subset. Conclusions: Future work will determine the minimal dose of fludarabine to achieve this effect, test the feasibility of using ex vivo nucleoside analog incubation to reduce alloreactivity in samples from patient/donor pairs, and determine the maximum tolerated dose of mDL in a phase 1 clinical trial with patients at high risk for relapse and infectious complications following allogeneic transplantation. Figure Figure


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1373-1373
Author(s):  
JianXiang Zou ◽  
Jeffrey S Painter ◽  
Fanqi Bai ◽  
Lubomir Sokol ◽  
Thomas P. Loughran ◽  
...  

Abstract Abstract 1373 Introduction: LGL leukemia is associated with cytopenias and expansion of clonally-derived mature cytotoxic CD8+ lymphocytes. The etiology of LGL leukemia is currently unknown, however, T cell activation, loss of lymph node homing receptor L-selectin (CD62L), and increased accumulation of T cells in the bone marrow may lead to suppressed blood cell production. The broad resistance to Fas (CD95) apoptotic signals has lead to the hypothesis that amplification of clonal cells occurs through apoptosis resistance. However, the proliferative history has not been carefully studied. To define possible mechanism of LGL leukemia expansion, T cell phenotype, proliferative history, and functional-related surface marker expression were analyzed. Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from 16 LGL leukemia patients that met diagnostic criteria based on the presence of clonal aβ T cells and >300 cells/ml CD3+/CD57+ T cells in the peripheral blood. Samples were obtained from 10 age-matched healthy individuals from the Southwest Florida Blood Services for comparisons. Multi-analyte flow cytometry was conducted for expression of CD3, CD4/8, CD45RA, CD62L, CD27, CD28, CD25, CD127, IL15Ra, IL21a, CCR7 (all antibodies from BD Biosciences). The proliferative index was determined by Ki67 expression in fixed and permeabilized cells (BD Biosciences) and the proliferative history in vivo was assessed by T-cell-receptor excision circle (TREC) measurement using real-time quantitative PCR (qRT-PCR) in sorted CD4+ and CD8+ T cells. TRECs are episomal fragments generated during TCR gene rearrangements that fail to transfer to daughter cells and thus diminish with each population doubling that reflects the in vivo proliferative history. Results: Compared to healthy controls, significantly fewer CD8+ naïve cells (CD45RA+/CD62L+, 8.4 ± 10.8 vs 24.48 ± 11.99, p=0.003) and higher CD8+ terminal effector memory (TEM) T cells (CD45RA+/CD62L-, 67.74 ± 28.75 vs 39.33 ± 11.32, p=0.007) were observed in the peripheral blood. In contrast, the percentage of CD4+ naïve and memory cells (naïve, central memory, effector memory, and terminal effector memory based on CD45RA and CD62L expression) was similar in patients as compared to controls. The expression of CD27 (31.32 ± 34.64 vs 71.73 ± 20.63, p=0.003) and CD28 (31.38 ± 31.91 vs 70.02 ± 22.93, p=0.002) were lower in CD8+ T cell from patients with LGL leukemia and this reduction predominated within the TEM population (17.63±24.5 vs 70.98±22.5 for CD27, p<0.0001 and 13±20.5 vs 69.43± 21.59 for CD28, p<0.0001). Loss of these markers is consistent with prior antigen activation. There was no difference in CD25 (IL2Ra, p=0.2) expression on CD4+ or CD8+ T cells, but CD127 (IL7Ra, p=0.001), IL15Ra, and IL21Ra (p=0.15) were overexpressed in TEM CD8+ T cell in patients vs controls. All of these cytokine receptors belong to the IL2Rβg-common cytokine receptor superfamily that mediates homeostatic proliferation. In CD8+ T cells in patients, the IL-21Ra was also overexpressed in naïve, central and effector memory T cells. The topography of the expanded CD8+ T cell population was therefore consistent with overexpression of activation markers and proliferation-associated cytokine receptors. Therefore, we next analyzed Ki67 expression and TREC DNA copy number to quantify actively dividing cells and determine the proliferative history, respectively. We found that LGL leukemia patients have more actively dividing CD8+ TEM T cells compared to controls (3.2 ± 3.12 in patients vs 0.44 ± 0.44 in controls, p=0.001). Moreover, the TREC copy number in CD8+ T cells was statistically higher in healthy individuals after adjusting for age (177.54 ± 232 in patients vs 1015 ± 951 in controls, p=0.019). These results show that CD8+ cells in the peripheral compartment have undergone more population doublings in vivo compared to healthy donors. In contrast, the TREC copies in CD4+ T-cells were similar between LGL patients and controls (534.4 ± 644 in patients vs 348.78 ± 248.16 in controls, p>0.05) demonstrating selective cellular proliferation within the CD8 compartment. Conclusions: CD8+ T- cells are undergoing robust cellular activation, contraction in repertoire diversity, and enhanced endogenous proliferation in patients with LGL leukemia. Collectively, these results suggest that clonal expansion is at least partially mediated through autoproliferation in T-LGL leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document