Investigating Platelet Interactions in Sickle Cell Disease Using a Novel Multi-Shear "Endothelialized" Microfluidic System

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4155-4155
Author(s):  
Margo Renee Rollins ◽  
Byungwook Ahn ◽  
Yumiko Sakurai ◽  
Jordan C Ciciliano ◽  
Wilbur A Lam

Abstract Sickle Cell Disease (SCD) is an inherited disorder of the β-globin chain of hemoglobin, in which a single point mutation leads to decreased deformability of red blood cells (RBCs) and increased cellular adhesion to endothelium. The effect of this mutation on RBCs has been well characterized, and the interplay of endothelial cells, RBCs, and white blood cells (WBCs) have also been well characterized. However, few studies have specifically investigated how platelets interact with endothelial cells and other blood cells in the context of SCD and the role these cell fragments may have in vaso-occlusion. To that end, we utilized microfluidic technology previously developed in our lab to perform a “real time” in vitro analyses of platelet-endothelial cell interactions in SCD patient samples. This “microvasculature-on-a-chip” enables the visualization of blood cell-endothelial cell interactions under a controlled hemodynamic environment (Tsai et al, JCI, 2012). As shear stress can trigger platelet activation, we further modified and optimized our standard microfluidic devices to encompass 3 different physiologic shear rates. Our device features microchannels 50µm in diameter with human umbilical vein endothelial cells (HUVEC) confluently lining the channels; there are 12 channels in each device, grouped in 3 sets of 4 channels with graduating shear rates spanning 3 orders of magnitude (Figure 1). Our initial experiments were performed under normoxic conditions allowing characterization of platelet-endothelial interactions in an “arterial” in vitro environment. Whole blood samples were obtained from 3 patient populations: patients with HgbSS SCD on hydroxyurea (HgbSS+HU), patients with HgbSS SCD not on hydroxyurea (HgbSS-no HU), and normal healthy controls. Over 30 minutes, whole blood stained with fluorescently labeled CD41 to identify platelets and Hoeschst to identify HUVEC nuclei was perfused at a rate of 1.5µl/minute under videomicroscopy. Accumulation of platelets on the endothelialized channels and platelet aggregates were quantified based on anti-CD41 fluorescence. Within 1 minute of perfusion, HgbSS-no HU whole blood samples exhibited extensive platelet aggregates at 1 and 10 dyne/cm2 (Figure 2); this phenomenon did not occur under any of the shear conditions in blood samples from Hgb SS+HU or healthy control samples. In HgbSS-no HU blood samples, some of these “thrombi”-like aggregates were stable under flow, increased in size, and persisted for the remainder of the 30 minute experiments. In contrast, mild, uniform, platelet adhesion slowly developed at high shear conditions in Hgb SS+HU with fewer platelet aggregates forming as compared to patients with HgbSS- no HU. Healthy control samples did not exhibit this platelet aggregation. There appears to be an attenuating effect of hydroxyurea on platelets that prevents platelet clumping from occuring as frequently under various shear conditions that is not present in the Hgb SS-no HU samples (Figure 3). In conclusion, using our novel in vitro system, we have demonstrated the platelets from Hgb SS-no HU patients have a significantly increased propensity to adhere, aggregate, and accumulate in endothelialized microvasculature-sized microchannels. Interestingly, this effect appears to be attenuated in blood samples from Hgb SS+HU patients and not present in healthy controls, demonstrating that hydroxyurea appears to be an important modifier of this phenomenon. Experiments investigating the underlying mechanisms of this phenomenon, the effects of deoxygenation and the potential role of platelets in vaso-occlusion, the effects of sickle cell platelet adhesion/aggregation on endothelial function, and how hydroxyurea may or may not affect any or all of these parameters, are all currently ongoing. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.

1958 ◽  
Vol 193 (2) ◽  
pp. 244-248 ◽  
Author(s):  
Perry Ruth Stahl ◽  
Homer E. Dale

In a repeated study on 17 dairy calves, T-1824 dye plasma dilution showed significantly higher blood volumes than were found by any other technique or computation method using Cr51-tagged red blood cells. Five blood samples taken at 20-minute intervals after injection showed consistent decrease in radioactivity count from the first to the last sample, indicating greater accuracy in radioactivity dilution regressed to zero time figures than in average counts of several postinjection samples. In vitro studies suggest a loss of Cr51 from red blood cells to plasma after saline washings are Cr-free. Percentage blood volumes computed from whole blood samples of calves injected with Cr51-tagged red blood cells decreased in a straight line relationship with increase of body weight. Percentage plasma and whole blood volumes estimated with the T-1824 dye technique decreased regularly with body weight increase until a second determination was made when there was a rapid rise nearly to the level of the smallest calves, followed by another regular decrease with increase in weight. It is suggested that repeated dye injections do not always measure the same space. Regressed values of five whole blood samples taken at 20-minute intervals after injection of Cr51 tagged red blood cells gave more consistent blood volume determinations than either the weighed red cells or the plasma dye dilutions of the same samples.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3381-3381 ◽  
Author(s):  
Margo Renee Rollins ◽  
Byungwook Ahn ◽  
Yumiko Sakurai ◽  
Wilbur A Lam

Abstract Introduction: Sickle Cell Disease (SCD) is an inherited monogenic hemoglobin disorder characterized by decreased red blood cells (RBCs) deformability. While RBCs are directly affected by this mutation, the interaction of these cells in the milieu of other components including white blood cells (WBCs), platelets, and soluble factors in whole blood are also thought to contribute to microvascular occlusion in SCD pathophysiology. Several studies have suggested that platelet activation is increased in SCD, but how platelets affect microvascular occlusion is unknown. As cellular interactions are affected by different flow conditions, we leveraged our previous "endothelialized" microfluidic technology (Tsai et al, JCI, 2012) to develop a novel multi-shear microfludic device to investigate blood cell-endothelial cell interactions in 3 different shear rates spanning 3 orders of magnitude ranging from venous to arteriolar shear conditions found in vivo (Figure 1). As platelets are shear-sensitive, this device is conducive to studying platelet interactions in SCD. In addition, we utilized our multi-shear endothelialized microfluidic device for drug discovery, elucidating the mechanism of action of Purified Poloxamer 188 (MST-188). MST-188 is a non-ionic, block copolymer surfactant that has been studied in nearly 400 patients with SCD and is currently being investigated in EPIC (Evaluation of Purified Poloxamer 188 In Crisis), a Phase III trial. MST-188 is composed of a single chain of hydrophobic polyoxypropylene flanked by two hydrophilic polyoxyethylene chains. It is hypothesized to improve microvascular blood flow by reducing viscosity, particularly under low shear conditions, and reducing adhesive frictional forces (Ballas et al 2004). We utilized our endothlelialized multi-shear microfluidic technology to observe cellular interactions in SCD patient samples treated with MST-188. Methods: Whole blood samples were collected from Pediatric patients with HgbSS SCD, including patients on hydroxyurea (HU) via venipuncture in citrate collecting tubes. Samples were recalcified and perfused through a confluently endothelialized multi-shear microfluidic device for 20 minutes. Time-lapse epiflourescence videomicroscopy was obtained to observe cellular interactions under different physiologic flow conditions. Results: Platelet Aggregation in SCD: Using whole blood samples from SCD patients, we observed that platelet aggregation is markedly increased in Hgb SS patients not on HU compared to samples from control and Hgb SS patients on HU (Figure 2). This effect occurs for all shear rates. Attenuation of phosphotadylserine (PS) exposure by MST-188: When a cell undergoes apoptosis, PS "flips" from the intra- to extracellular surface acting as a signal for macrophage engulfment. In order to identify target cell populations a thin smear whole blood from a patient with HgbSS not on HU (Figure 3A). Samples were fluorescently tagged with anti-CD41 to identify platelets and Annexin V to identify the presence of PS (Figure 3B). Patients with HgbSS not on HU have relatively increased fluorescence that is attenuated with treatment with MST-188 (Figure 3C). Conclusion and Future Directions: We have successfully demonstrated a correlation with increased platelet aggregation in endothelialized microfluidic channels in patients with SCD compared to normal controls. The platelets of SCD patients have an increased propensity to aggregate in an abnormal non-shear dependent fashion which correlated directly with fluorescence. This phenomenon appears to be attenuated in patients with SCD on HU in all shear rates. We have also demonstrated that MST-188 attenuates PS exposure mostly found on irreversibly sickled cells. We believe this data and investigational platform to be a good springboard to unravel the utility of targeting platelet specific therapies to augment the course of VOC. This platform can also be used to continue to determine mechanism of action of MST-188 in disease processes, including SCD where inflammation and increased cellular turnover plays a critical role in pathology. Experiments investigating platelet activation markers, co-localization of other cell types including ISCs, reticulocytes and WBC subpopulations with platelet aggregates, as well as characterizing our microfluidic model under de-oxygenated conditions are currently ongoing. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 986-986
Author(s):  
Alison Leigh Banka ◽  
Mark Shamoun ◽  
Mario Gutierrez ◽  
Tyler Tanski ◽  
Lola Eniola-Adefeso

Introduction: Sickle cell disease (SCD) occurs due to a mutation in the β-subunit of hemoglobin, causing stiffening of red blood cells (RBCs) and leading to RBC sickling and vaso-occlusive crises (VOC) in SCD patients. While sickled RBCs remain a hallmark of SCD, they are prone to lysis and represent a small fraction of the total RBCs present in patients at a given time. The remaining RBCs maintain a normal, discoid shape and are either healthy or stiff due to polymerization of the hemoglobin β-globin subunit. In healthy blood flow, RBCs form a core in the center of the vessel and the remaining cells, platelets and white blood cells (WBCs), marginate towards the endothelium. However, the increased stiffness of RBCs in SCD disrupts this neat segregation of blood cells to different areas of the blood vessel and can contribute to VOC, the root cause of many acute and chronic complications for SCD patients. Despite the presence of normally shaped, stiffened RBCs in SCD patients, the impact of these RBCs on other cell types in blood flow is currently not well understood. Our laboratory previously demonstrated that the presence of artificially rigidified RBCs leads to an expansion of the RBC core and significantly decreases WBC adhesion to an inflamed endothelium in vitro. Here, we examine the impact of stiffened RBCs on platelet adhesion to a damaged endothelium in vitro by first using a model system with artificially rigidified RBCs and second, utilizing SCD patient blood to further support our model and understand platelet-RBC interactions in SCD patients. Methods: In our model system, we artificially rigidified RBCs taken from healthy donors and reconstituted them into whole blood before perfusing the mixture over an activated, damaged endothelium using a parallel plate flow chamber. We quantified platelet adhesion to the endothelium in comparison to healthy, non-rigidified controls using fluorescent microscopy. To determine if our model findings translated to SCD, we recruited a cohort of hemoglobin SS and SC patients during routine visits and similarly perfused their whole blood over the same damaged endothelium and quantified platelet adhesion. Results and conclusions: The inclusion of artificially rigidified RBCs in otherwise healthy subject blood flow significantly increased platelet adhesion to a damaged endothelium with a maximum increase in platelet adhesion of six-fold over a healthy, non-rigid control in our model system. Both RBC rigidity and the percentage of RBCs that were artificially rigidified had a large impact on the increase in platelet adhesion. SCD platelet adhesion to the damaged endothelium model varied from donor to donor based on variables such as treatment method and disease severity. Overall, this work experimentally elucidates the biophysical impact of stiffened RBCs on platelet adhesion using both an artificial model utilizing healthy blood as well as SCD blood, which can help determine the mechanism of action causing VOC in SCD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3567-3567
Author(s):  
Celeste K. Kanne ◽  
Varun Reddy ◽  
Vivien A. Sheehan

Background: ENDARITM (oral pharmaceutical L-glutamine powder) received FDA approval in 2017 as a treatment for sickle cell disease (SCD). A pivotal phase 3 clinical study conducted by Emmaus Medical, Inc. showed that L-glutamine resulted in a lower incidence of vaso-occlusive crises (VOC) as well as a lower rate of hospitalizations and shorter hospital stays. No changes in standard clinical laboratory values were noted. The clinical improvements associated with sickle cell complications are believed to be due to an increase in the proportion of the reduced form of nicotinamide adenine dinucleotides in the red blood cells (RBC) of patients with SCD, reducing the oxidative stress. While the endpoints in the phase 3 study are clinically important, it is essential that we identify biomarkers or measurable laboratory changes that can serve as endpoints for future clinical trials assessing dose optimization and the efficacy and safety of L-glutamine in SCD individuals, including those with hepatic and renal dysfunction. RBC rheology is markedly abnormal in SCD; blood is more viscous for a given hematocrit than normal individuals, dense red blood cells (DRBC) are packed with HbS, potentiating sickling, and RBCs are less deformable than those of HbAA or HbAS individuals. High whole blood viscosity, high DRBCs, and poor RBC deformability are associated with higher rates of VOC. Given the demonstrated reduction in pain events, we hypothesized that L-glutamine might improve RBC rheology and sought to test this in vitro and in vivo using a battery of rheological tests. Methods: For the in vitro study, 6 mL of whole blood was drawn into an EDTA vacutainer from ten pediatric patients with sickle cell anemia (HbSS or HbSβ0) during routine clinical checkups under an IRB approved protocol. The cohort included 3 female and 7 male patients, ages 2-19 years old. All patients were on a steady dose of hydroxyurea and did not receive a transfusion within the 3 months prior to sample collection. A 200 mM stock solution of L-glutamine and water was mixed and filtered under light-protected conditions. Aliquots were stored at -20°C to avoid multiple freeze/thaw cycles. L-glutamine was added to 3 mL of whole blood for a final concentration of 1 mM (average in vivo L-glutamine plasma concentration in patients with SCD treated with L-glutamine); 3 mL of the same patient sample with water added served as a control. After a 24-hour incubation period at 4°C, whole blood viscosity was measured using a cone and plate viscometer at 37°C (DV3T Rheometer, AMETEK Brookfield, USA), %DRBCs were measured on an ADVIA 120 Hematology System (Siemens Healthcare Diagnostics, Inc., USA), and deformability measured using a Laser Optical Rotational Red Cell Analyzer (Lorrca®) (RR Mechatronics, the Netherlands) with the Oxygenscan module. The Oxygenscan measures RBC deformability at normoxia (Elmax), deformability upon deoxygenation (EImin), and point of sickling (PoS), the oxygen tension at which deformability begins to decline, reflecting the patient-specific pO2 at which sickling begins. Paired samples (with and without added L-glutamine) were analyzed using Student's t-test. For the in vivo study, rheological tests were performed on peripheral blood from one patient (18-year-old male on hydroxyurea) at baseline and treated with L-glutamine as part of his routine clinical care. Results and conclusions: Addition of L-glutamine in vitro significantly reduced the PoS, meaning RBCs incubated with L-glutamine could tolerate a lower pO2 before sickling compared to the control. RBCs incubated with L-glutamine also had significantly higher EImin, meaning deoxygenated RBCs were more flexible and deformable. Whole blood viscosity at 45s-1 and 225s-1 did not change significantly following incubation with L-glutamine; %DRBCs also did not change significantly (Table 1). The in vivo patient sample tested exhibited a similar improvement in PoS and EImin (Figure 1). We therefore propose to further test the performance of the PoS and EImin as possible biomarkers of response to L-glutamine in vivo. If validated, these biomarkers may also help further elucidate the mechanisms of action of L-glutamine in SCD. Disclosures No relevant conflicts of interest to declare.


1987 ◽  
Author(s):  
J B Hansen ◽  
J O Olsen ◽  
L Wilagård ◽  
B Østerud

In an in vitro model, stimulation of blood cells with a low concentration of lipopolysaccharides (LPS) revealed differences between women and men that possibly could be an explanation to why young women have less coronary heart disease than men (see abstract Hansen et al. “A model to--”).This model was also used to study the effect of intake of cod liver oil (CLO). 40 students (20 men and 20 women) were tested followed by an intake of 25 ml CLO daily for 2 months by 20 of the students.Heparinized blood samples were incubated with 2 ng LPS/ ml for 2 hours followed by isolation of plasma for thromboxane B2 and 6-keto-PG 1α quantitation.After the first 2 months period of CLO drinking we have the following results:The two months of CLO intake had no significant effect pn the thromboplastin induced synthesis in monocytes. In addition platelet aggregation was tested in a whole blood aggregometer using ADP addition to heparinized blood or collagen induced platelet aggregation in citrated whole blood. ADP aggregation was reduced from 75.9 ± 16.8% to 55.4 ± 19% in the CLO group of women, whereas the reduction in the CLO group of men was 70.1 ± 17.1% to 60.9±18.6%. Similar result were found with collagen aggregation (57% to 33% for women and 48% to 30% for men).It is concluded that CLO intake reduces TxA2 production and plateletaggregation without having reduced effect on PGI2 production in whole blood.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3954-3954
Author(s):  
Robert Loncar ◽  
Volker Stoldt ◽  
Volker Thomas ◽  
Reiner B. Zotz ◽  
Rudiger E. Scharf

Abstract In this study, we evaluated the influence of antithrombin on platelet adhesion onto immobilized fibrinogen using an in vitro system simulating venous and arterial flow. Platelets in anticoagulated whole blood (PPACK, 40μM) were labeled with mepacrine (10μM). Adhesion of platelets onto fibrinogen-coated glass cover slips was assessed in a rectangular flow chamber (shear rates of 13 s−1 to 1500 s−1). Platelets were visualized at 15 sec, 1 and 5 min following perfusion using a fluorescence laser-scan microscope. In parallel, the effects of supraphysiological supplementation of blood with antithrombin (2.8 IU/ml of blood) on platelet adhesion rates was evaluated. During perfusion, platelet adhesion onto fibrinogen linearly increased with exposure time and shear rates. Within the first min of perfusion, an inverse correlation between platelet adhesion and plasma antithrombin activity was observed at shear rates of 13 s−1 and 50 s−1 (r=−0.48 and r=−0.7, p each <0.05). Significant differences in platelet adhesion (1786±516 U vs. 823±331 U, p<0.05) related to low (92±3.3%) and high (117±4.1%) antithrombin activity was observed at a flow rate of 13s−1 within first minute. Further supplementation of anticoagulated whole blood with antithrombin (activity up to 280 %) decreased the rate of platelets adhesion (ratio of adhesion at 1 and 5 min) about 35% when compared to nonsupplemented blood (1.25 ± 0.17 vs. 1.95 ± 0.4, p=0.008). Application of heparine as anticoagulant did not enhance the antiadhesion properties of antithrombin. Our findings are in accordance with the “low shear phenomenon” of arterial thrombus progression, i.e. thrombus enlargement at distal areas with reduced flow or even stasis. Moreover, the observation that antithrombin significantly suppressed platelet adhesion onto immobilized fibrinogen under low flow conditions is of therapeutic interest and needs further evaluation.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y.N Avtaeva ◽  
I.S Melnikov ◽  
A.E Komlev ◽  
T.E Imaev ◽  
S.D Okhota ◽  
...  

Abstract Introduction Von Willebrand factor (vWF) changes conformation from globular to fibrillar in the range of shear rates above 5000 s-1. High shear rates, observed in severe aortic stenosis, create conditions for activation of vWF, which opens up access for platelets and coagulation factors to the previously hidden domains of the molecule. At the same time, vWF undergoes increased degradation by metalloproteinase ADAMTS13. Proteolytic cleavage of vWF leads to deficiency of hemostatically active high molecular weight multimers (HMWM) of vWF, while its mass concentration remains unaltered. This results in the development of acquired von Willebrand disease type 2A (vWD) and concomitant gastrointestinal bleeding. The combination of acquired vWD 2A and gastrointestinal bleeding, developed due to severe aortic stenosis, is called Heyde's syndrome. The correlation of shear stress activation of vWF and gastrointestinal bleeding in patients with Heyde's syndrome remains poorly studied. The aim of the study was to measure vWF-mediated platelet adhesion to fibrinogen-coated surfaces under shear rates higher than 5000 s-1 in whole blood samples of healthy volunteers and patients with Heyde's syndrome. Methods A microfluidic system simulating blood flow in vessels was used to assess platelet adhesion. Platelet adhesion was measured by an increase in the intensity of laser radiation scattered from a fibrinogen-coated surface during a 15 minutes circulation of whole blood samples through a flow chamber under shear rates higher than 5000 s-1. Platelets in whole blood samples were activated with 5 μM ADP prior to measurement. The study included 5 patients with Heyde's syndrome 55–80 years old. The control group included 6 healthy volunteers 25–55 years old. vWF-mediated platelet adhesion was detected by blocking platelet-vWF binding with anti-GPIb monoclonal antibody (mAb). Fibrinogen-mediated platelet adhesion was detected by blocking platelet GPIIb/IIIa receptors with mAb. Result The inhibition of GPIb vWF-receptor reduced platelet adhesion by 7.6±3.5% (p&lt;0.05) in patients with Heyde's syndrome, and by 16.5±3.3% (p&lt;0.05) in healthy volunteers. The inhibition of GPIIb/IIIa fibrinogen receptor reduced platelet adhesion by 96±7% (p&lt;0.05) in patients with Heyde's syndrome, and by 80.2±6.6% (p&lt;0.05) in healthy volunteers. Conclusion Significantly reduced contribution of vWF to platelet adhesion under shear rates higher than 5000 s-1 may indicate a decrease in hemostatically active HMWM of vWF. Shear stress activation of vWF in the range of high shear rates and its subsequent inactivation by ADAMTS13 may lead to functional vWF deficiency and the development of gastrointestinal bleeding in Heyde's syndrome. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): The Russian Science Foundation


1987 ◽  
Author(s):  
T H Müller ◽  
K Rühr ◽  
H H Callisen ◽  
W G Eisert

Intact endothelial cells are known to form a non-thrombogenic surface and to actively restrict the extent of thrombus formation on denuded vessel walls via such mechanisms as the binding of thrombin and activation of protein C, or the synthesis and release of prostacyclin. In an in vitro system, we have investigated how platelet inhibitors modulate the antithrombotic effects of human endothelial cells. Human endothelial cells isolated from umbilical veins were plated on one half of a subendothelial matrix (SEM) harvested from bovine cornea endothelial cells. The endothelial cells were preincubated with a drug and then exposed to anticoagulated whole blood from human donors in the presence or absence of the same drug and agitated for 15 min. The number and size of platelets interacting with the SEM were quantified by morphometric analysis.In our in vitro system, platelet aggregates on SEM that was partially covered with human endothelial cells were significantly smaller than on uncovered SEM. No difference in platelet adhesion was observed. In the absence of endothelial cells, the cyclooxigenase inhibitors acetylsalicylic acid (ASA) and flurbiprofen strongly reduced the size of aggregates formed on the SEM. Pretreatment of only the endothelial cells with ASA increased the size of the aggregates, while ASA treatment of endothelial cells as well as the whole blood did not reduce the mean aggregate size below that of controls. in contrast, the platelet phosphodiesterase inhibitors AHP 719 and UDCG 212 strongly decreased platelet aggregation without reducing platelet adhesion not only in the absence but also in the presence of endothelial cells pretreated with the inhibitors.Our results demonstrate that this in vitro model of a partially injured vessel wall is well suited to study the effects of endothelial cells on platelet function. Moreover, inhibitors of phosphodiesterase in contrast to ASA have profound antithrombotic effects in this model.


Author(s):  
David Lominadze ◽  
Jack T. Saari ◽  
Frederick N. Miller ◽  
James L. Catalfamo ◽  
Susan S. Percival ◽  
...  

2021 ◽  
Author(s):  
Benjamaporn Supawat ◽  
Watcharit Vorasiripreecha ◽  
Sakornniya Wattanapongpitak ◽  
Suchart Kothan ◽  
Montree Tungjai

Abstract This current study was to determine the effects of in vitro exposure to radioactive cesium-137 on some human blood components (Plasma and red blood cells). Blood samples were given a radiation dose of 0.02, 0.05, 0.1, 0.2, and 0.3 mGy of gamma rays using a 137Cs radioactive standard source. The blood samples that were exposed to 0 mGy served as sham-controls. The spectrofluoroscopic technique was used to determine the autofluorescence spectrum of protein in plasma or red blood cells by using excitation wavelength and range of emission wavelengths at 280 nm and 300-550 nm, respectively. The spectrophotometric technique was used to determine the release of hemoglobin from the red blood cells to the supernatant. This data indicated no change in the ratio of fluorescence emission intensity at 340 nm of wavelength of protein extract from irradiated whole blood or red blood cells compared to the corresponding non-irradiated control. The results did not change in the absorption intensity at 415 nm of wavelength of hemoglobin leakage from in vitro irradiated red blood cells when compared to the corresponding non-irradiated red blood cells. These current results suggested that there were no harmful effects of the low-dose gamma rays from radioactive 137Cs on some blood components when human whole blood was exposed to gamma rays in an in vitro condition.


Sign in / Sign up

Export Citation Format

Share Document